GATE CLOUD

SIGNALS \& SYSTEMS

GATE CLOUD

SIGNALS \& SYSTEMS

R. K. Kanodia
Ashish Murolia

JHUNJHUNUWALA

Jaipur

GATE CLOUD Signals \& Systems, 1e

R. K. Kanodia, Ashish Murolia

AA1213
Copyright © by Jhunjhunuwala

Information contained in this book has been obtained by author, from sources believes to be reliable. However, neither Jhunjhunuwala nor its author guarantee the accuracy or completeness of any information herein, and Jhunjhunuwala nor its author shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that Jhunjhunuwala and its author are supplying information but are not attempting to render engineering or other professional services.

JHUNJHUNUWALA

B-8, Dhanshree Tower Ist, Central Spine, Vidyadhar Nagar, Jaipur - 302023
Ph : +91-141-2101150.
www.jhunjhunuwala.com
email : info@jhunjhunuwala.com

Printed By: Jaipur Printing Centre, Jaipur

Preface to First Edition

GATE Question Cloud caters a versatile collection of Multiple Choice Questions to the students who are preparing for GATE(Gratitude Aptitude Test in Engineering) examination. This book contains over 1500 multiple choice solved problems for the subject of Signals \& Systems, which has a significant weightage in the GATE examinations of EC, EE \& IN branches. The GATE examination is based on multiple choice problems which are tricky, conceptual and tests the basic understanding of the subject. So, the problems included in the book are designed to be as exam-like as possible. The solutions are presented using step by step methodology which enhance your problem solving skills.
The book is categorized into eleven chapters covering all the topics of syllabus of the examination. Each chapter contains :

- Exercise 1 : Theoretical \& One line Questions
- Exercise 2 : Level 1
- Exercise 3 : Level 2
- Exercise 4 : Mixed Questions taken form previous examinations of GATE \& IES.
- Detailed Solutions to Exercise 2, 3 \& 4
- Summary of useful theorems

Although we have put a vigorous effort in preparing this book, some errors may have crept in. We shall appreciate and greatly acknowledge the comments, criticism and suggestion from the users of this book which leads to some improvement.

Wish you all the success in conquering GATE.

CONTENTS

CHAPTER 1
 CONTINUOUS TIME SIGNALS

Exercise 1.1
 3

Exercise $1.2 \quad 9$
Exercise $1.3 \quad 31$
Exercise 1.444
Solution $1.1 \quad 52$
Solution 1.253
Solution $1.3 \quad 72$
Solution 1.487

CHAPTER 2
 CONTINUOUS TIME SYSTEM

Exercise $2.1 \quad 97$
Exercise 2.2100
Exercise 2.3115
Exercise 2.4126
Solution $2.1 \quad 139$
Solution 2.2140
Solution $2.3 \quad 162$
Solution 2.4182
CHAPTER 3
DISCRETE TIME SIGNALS

Exercise 3.1
 203

Exercise $3.2 \quad 207$
Exercise $3.3 \quad 222$
Exercise 3.4244
Solution $3.1 \quad 247$
Solution 3.2248
Solution $3.3 \quad 267$
Solution 3.4286

CHAPTER 4
DISCRETE TIME SYSTEM

Exercise 4.1
 291

Exercise $4.2 \quad 294$
Exercise $4.3 \quad 305$
Exercise 4.4315
Solution 4.1323
Solution 4.2324
Solution 4.3343
Solution 4.4360

CHAPTER 5

THE LAPLACE TRANSFORM
Exercise $5.1 \quad 377$
Exercise 5.2381
Exercise $5.3 \quad 395$
Exercise 5.4405
Solution 5.1424
Solution 5.2425
Solution 5.3445
Solution 5.4459
CHAPTER 6
THE Z-TRANSFORM
Exercise $6.1 \quad 283$
Exercise 6.2486
Exercise $6.3 \quad 498$
Exercise $6.4 \quad 508$
Solution $6.1 \quad 525$
Solution 6.2 526
Solution $6.3 \quad 545$
Solution 6.4562
CHAPTER 7
THE CONTINUOUS TIME FOURIER TRANSFORM
Exercise 7.1 587
Exercise 7.2 592
Exercise 7.3 607
Exercise 7.4 619
Solution 7.1 634
Solution 7.2 635
Solution 7.3 652
Solution 7.4 666
CHAPTER 8
THE DISCRETE TIME FOURIER TRANSFORM
Exercise 8.1 687
Exercise 8.2 691
Exercise 8.3 702
ExERCISE 8.4 711
Solution 8.1 716
Solution 8.2 717
Solution 8.3 731
Solution 8.4 742
CHAPTER 9THE CONTINUOUS TIME FOURIERSERIES
Exercise 9.1 751
Exercise 9.2 757
Exercise 9.3 768
Exercise 9.4 778
Solution 9.1 793
Solution 9.2 794
Solution 9.3 807
Solution 9.4 817

CHAPTER 10
 THE DISCRETE TIME FOURIER SERIES

Exercise 10.1 837
Exercise 10.2 839
Exercise 10.3 846
Exercise 10.4 855
Solution 10.1 857
Solution 10.2 858
Solution 10.3 868
Solution 10.4 879
CHAPTER 11
SAMPLING \& SIGNAL RECONSTRUCTION
Exercise 11.1 881
Exercise 11.2 884
Exercise 11.3 895
Exercise 11.4 899
Solution 11.1 903
Solution 11.2 904
Solution 11.3 916
Solution 11.4 920

GATE CLOUD

R. K . Kanodia \& Ashish Murolia

GATE CLOUD is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as
> Over 1300 Multiple Choice Questions with full \& detailed explanations.
> Questions are graded in the order of complexity from basic to advanced level.
> Contains all previous year GATE and IES exam questions from various branches.
> Each question is designed to GATE exam level.

Upcoming titles in this series

© Circuit Analysis (For EC, EE \& IN branches)
[an Analog Circuit and Devices (For EC, EE \& IN branches)
Con Control Systems (For EC, EE \& IN branches)

GHAPTER 1

CONTINUOUS TIME SIGNALS

EXCERCISE 1.1

MCQ 1.1.1 The graphical representation of a signal in the time domain is known as
(A) frequency
(B) waveform
(C) frequency spectrum
(D) none of the above

MCQ 1.1.2 A continuous-time signal is a signal in which the independent variable is
(A) discrete
(B) continuous
(C) (A) or (B)
(D) none of the above

MCQ 1.1.3 Digital signals are those signal which
(A) do not have a continuous set of values
(B) have values at discrete instants
(C) can utilize decimal or binary system
(D) are all of the above

MCQ 1.1.4 A deterministic signal is the signal which
(A) can not be represented by a mathematical expression
(B) has no uncertainty
(C) has uncertainty
(D) none of the above

MCQ 1.1.5 A random signal is the signal which
(A) has uncertainty
(B) has no uncertainty
(C) is a completely specified function of time
(D) none of the above

MCQ 1.1.6 Speech signals and the sine wave respectively are the example of (A) deterministic signal, random signal.
(B) both random signals
(C) both deterministic signals
(D) random signal, deterministic signals

MCQ 1.1.7 Which of the following is a periodic signal ?
(A) $x(t)=A t^{2}$
(B) $x(t)=A e^{-j \alpha t}$
(C) $x(t)=A e^{\alpha t}$
(D) $x(t)=A u(t)$

MCQ 1.1.8 The sum of two periodic signals having periods T_{1} and T_{2} is periodic only if the ratio of their respective periods $\left(T_{1} / T_{2}\right)$ is
(A) an irrational number
(B) a rational number
(C) an odd number
(D) an even number

MCQ 1.1.9 A continuous-time signal $x(t)$ is said to be periodic with a fundamental period T_{0}, where T_{0} is the
(A) smallest positive integer satisfying the relation $x(t)=x\left(t+m T_{0}\right)$ for any t and any m.
(B) positive constant satisfying the relation $x(t)=x\left(t+m T_{0}\right)$ for every t and any integer m.
(C) largest positive constant satisfying the relation $x(t)=x\left(t+m T_{0}\right)$ for any t and any integer m
(D) smallest positive constant satisfying the relation $x(t)=x\left(t+m T_{0}\right)$ for every t and any integer m

MCQ 1.1.10 Sine waves, cosine waves, square waves and triangular waves are the examples of
(A) non-deterministic functions
(B) multiple frequency functions
(C) periodic functions
(D) all of the above

MCQ 1.1.11 A signal is given by $x(t)=2 \cos (\omega t) \sin ^{2}(\omega t)+2 \cos (\omega t)+\sin \omega(t)+\sin ^{2}(\omega t)$. The odd component of $x(t)$ is
(A) $\cos (\omega t) \sin ^{2}(\omega t)$
(B) $\sin (\omega t)$
(C) $\sin ^{2}(\omega t)$
(D) $\cos (\omega t)$

MCQ 1.1.12 $f(t)$ is even while $g(t)$ is odd. If $x(t)=f(t)+g(t)$ and $y(t)=f(t) g(t)$ then $x(t)$ and $y(t)$ are respectively
(A) neither, even
(B) odd, even
(C) neither, odd
(D) even, odd

MCQ 1.1.13 Signal $x(t)=5 \sin 20 \pi t$
(A) is an even signal
(B) is an odd signal
(C) has even and odd parts
(D) none of the above

MCQ 1.1.14 Which of the following statements is not true ?

1. The product of two even signals in an even signal
2. The product of two odd signals in an odd signal.
3. The product of even and odd signals in an even signal.
4. The product of even and odd signal is an odd signal.
(A) 2 and 3
(B) 1 only
(C) 3 only
(D) 4 only

MCQ 1.1.15 $x(t)=5 \sin \left(10 \pi t+30^{\circ}\right)$
(A) is an odd signal
(B) is an even signal
(C) has an even part as well as an odd part
(D) none of the above

MCQ 1.1.16 The signal $x(t)=10 e^{j 10 \pi t}$ is
(A) an energy signal
(B) a power signal
(C) neither energy nor power signal
(D) both energy and power signal

MCQ 1.1.17 Signal $e^{-2 t} u(t)$ is
(A) a power signal
(B) an energy signal
(C) neither an energy signal nor a power signal
(D) none of the above

MCQ 1.1.18 A signal is an energy signal if it has
(A) infinite energy
(B) finite energy
(C) zero average power
(D) both (B) and (C)

MCQ 1.1.19 A signal is a power signal if it has
(A) infinite energy
(B) infinite power
(C) finite power
(D) both (A) and (C)

MCQ 1.1.20 The signal $A \cos \left(\omega_{0} t+\phi\right)$ is
(A) a periodic signal
(B) a power signal
(C) both periodic and power signals
(D) a energy signal

MCQ 1.1.21 Which of the following is an energy signal ?
(A) $x(t)=A \cos \omega_{0} t$
(B) $x(t)=A \sin \omega_{0} t$
(C) $x(t)=A e^{j \omega_{0} t}$
(D) $x(t)=e^{-a t} u(t)$

MCQ 1.1.22 Which of the following statement are true ?

1. Most of the periodic signals are energy signals.
2. Most of the periodic signals are power signals.
3. For energy signals, the power is zero.
4. For power signals, the energy is zero.
(A) 1, 2 and 3 only
(B) 1 only
(C) 1 and 2 only
(D) $1,2,3$, and 4

MCQ 1.1.23 A complex valued signal $x(t)=x_{R}(t)+j x_{I}(t)$ has conjugate symmetry if
(A) $x_{R}(t)$ is odd while $x_{I}(t)$ is even
(B) $x_{R}(t)$ and $x_{I}(t)$ are both odd
(C) $x_{R}(t)$ is even while $x_{I}(t)$ is odd
(D) $x_{R}(t)$ and $x_{I}(t)$ are both even

MCQ 1.1.24 A signal $x(t)$ has energy E_{x}, then energy of the signal $x(a t)$ is given by
(A) $E_{x} /|a|^{2}$
(B) $E_{x} /|a|$
(C) $E_{x}|a|^{2}$
(D) $|a| E_{x}$

MCQ 1.1.25 The value of $\int_{-\pi}^{\pi} 2 \cos \omega t \delta(\omega) d \omega$ is
(A) 0
(B) $\pi / 2$
(C) 1
(D) 2

MCQ 1.1.26 If $\delta(t)$ is the unit impulse function, then $\int_{-\infty}^{\infty} x(t) \delta(t) d t$ equals to
(A) $x(t)$
(B) $x(0)$
(C) $x(\infty)$
(D) $x(1)$

MCQ 1.1.27 For unit impulse function $\delta(t)$, which of the following relation holds true ?
(A) $\delta(-t)=\delta\left(\frac{t}{2}\right)$
(B) $\delta(-t)=\delta\left(t^{2}\right)$
(C) $\delta(-t)=\delta(t)$
(D) $\delta(-t)=\delta^{2}(t)$

MCQ 1.1.28 The function $f(t)=t \delta(t)$ will be equal to
(A) t
(B) ∞
(C) 1
(D) 0

MCQ 1.1.29 The unit impulse is defined as,
(A) $\delta(t)=\infty, t=0$
(B) $\delta(t)= \begin{cases}\infty, & t=0 \\ 0, & t \neq 0\end{cases}$
(C) $\delta(t)=\infty, t=0$ and $\int_{-\infty}^{+\infty} \delta(t) d t=0$
(D) $\delta(t)=\left\{\begin{array}{l}\infty, t=0 \\ 0, \quad t \neq 0\end{array}\right.$ and $\int_{-\infty}^{+\infty} \delta(t) d t=1$

MCQ 1.1.30 If $x(t)$ is a continuous time signal and $\delta(t)$ is a unit impulse signal then value of integral $\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right)$ is equal to
(A) $x(t)$
(B) $x\left(t_{0}\right)$
(C) $\delta(t)$
(D) 1

MCQ 1.1.31 A weighted impulse function $\delta(a t)$ has
(A) unit area and unit amplitude
(B) infinite area and finite amplitude
(C) finite area and infinite amplitude
(D) infinite area and infinite amplitude

MCQ 1.1.32 Unit step signal $u(t)$ is
(A) an energy signal
(B) a power signal
(C) neither power signal nor energy signal
(D) both

MCQ 1.1.33 A unit step function is given by
(A) $u(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}$
(B) $u(t)= \begin{cases}1, & t=0 \\ 0, & t \neq 0\end{cases}$
(C) $u(t)= \begin{cases}t, & t \geq 0 \\ 0, & t<0\end{cases}$
(D) $u(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}$

IMCQ 1.1.34 Match List I with List II and choose the correct answer using the codes given below the lists :

List I (Signal)

P. Unit Impulse signal
Q. Unit Step signal
R. Random noise signal
S. Decaying exponential Codes :

	P	Q	R	S
(A)	3	2	4	1
(B)	2	4	1	3
(C)	1	2	3	4
(D)	2	1	4	3

MCQ 1.1.35 A unit ramp function is defined as
(A) $r(t)= \begin{cases}1, & t=0 \\ 0, & t \neq 0\end{cases}$
(B) $r(t)= \begin{cases}|t|+1, & t \geq 0 \\ 0, & t<0\end{cases}$
(C) $r(t)= \begin{cases}t, & t \geq 0 \\ 0, & t<0\end{cases}$
(D) $r(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}$

MCQ 1.1.36 The differentiation of a unit step signal is,
(A) an impulse signal
(B) a ramp signal
(C) an exponential signal
(D) a parabolic signal

MCQ 1.1.37 In terms of unit-step function, signum function is given as
(A) $\operatorname{sgn}(t)=-u(t)$
(B) $\operatorname{sgn}(t)=2 u(t)$
(C) $2 \operatorname{sgn}(t)=u(t)$
(D) $\operatorname{sgn}(t)=2 u(t)-1$

MCQ 1.1.38 The signum function is defined as
(A) $\operatorname{sgn}(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}$
(B) $\operatorname{sgn}(t)= \begin{cases}1, & t>0 \\ -1, & t<0\end{cases}$
(C) $\operatorname{sgn}(t)= \begin{cases}0, & t>0 \\ -1, & t<0\end{cases}$
(D) $\operatorname{sgn}(t)= \begin{cases}-1, & t>0 \\ 1, & t<0\end{cases}$

MCQ 1.1.39 Differentiation of signum function will be
(A) $\frac{1}{2} \delta(t)$
(B) $\delta(t)$
(C) $2 \delta(t)$
(D) $2 u(t)$

MCQ 1.1.40 The sinc function $f(t)$ is defined as
(A) $f(t)=\frac{\sin \pi t}{\pi t}$
(B) $f(t)=\frac{\sin t}{\pi t}$
(C) $f(t)=\frac{\sin \pi t}{t}$
(D) $f(t)=\frac{\sin \pi t}{t}$
mCQ 1.1.41 The mathematical expression for the signal $x(t)$ shown in figure is given by

(A) $u(t-0.5)+u(t+0.5)$
(B) $u(t+0.5)-u(t-0.5)$
(C) $u(t-0.5)-u(t-0.5)$
(D) $u(t+0.5)+u(t-0.5)$

EXCERCISE 1.2

MCQ 1.2.1 What is the period of a signal $x(t)=3 \sin (4 \pi t)+7 \cos (3 \pi t)$?
(A) 2 sec
(B) 4 sec
(C) 12 sec
(D) $x(t)$ is not periodic

MCQ 1.2.2 The period of a signal $x(t)=3 \sin (4 \pi t)+7 \cos (10 t)$ is
(A) $10 \pi \mathrm{sec}$
(B) 5 sec
(C) 6 sec
(D) $x(t)$ is not periodic
mCQ 1.2.3 Consider the following continuous time signals

$$
\begin{aligned}
& x_{1}(t)=6 \sin (8 \pi t)+14 \cos (6 \pi t) \\
& x_{2}(t)=6 \sin (8 \pi t)+14 \cos (20 t)
\end{aligned}
$$

Which of the following statement regarding the periodicity of the signals is true ?
(A) $x_{1}(t)$ is periodic, $x_{2}(t)$ is aperiodic
(B) Both $x_{1}(t)$ and $x_{2}(t)$ are periodic
(C) $x_{1}(t)$ is aperiodic, $x_{2}(t)$ is periodic
(D) Both $x_{1}(t)$ and $x_{2}(t)$ are aperiodic

MCQ 1.2.4 What is the period of the signal $x(t)=\sin \left(\frac{2 \pi}{5} t\right) \cos \left(\frac{4 \pi}{3} t\right)$?
(A) 13 sec
(B) 91 sec
(C) 15 sec
(D) $x(t)$ is aperiodic

MCQ 1.2.5 Match List I (Signal) with List II (Period of the signal) and select the answer using the codes given below

List I (Signals)

P. $f_{1}(t)=\sin \left(\frac{2 \pi}{3}\right) t$
Q. $\quad f_{2}(t)=\sin \left(\frac{2 \pi}{5} t\right) \cos \left(\frac{4 \pi}{3} t\right)$
R. $f_{3}(t)=\sin 3 t$
S. $\quad f_{4}(t)=f_{1}(t)-2 f_{3}(t)$

List II (Period of the signal)

1. 15 Unit
2. 3 Unit
3. aperiodic
4. $2 \pi / 3$ unit

Codes :

	P	Q	R	S
(A)	1	4	3	2
(B)	3	2	1	4
(C)	1	2	3	4
(D)	2	1	4	3

MCQ 1.2.6 Which of the following signal is not periodic?
(A) $\sin (10 t)$
(B) $2 \cos (5 \pi t)$
(C) $\sin (10 \pi t) u(t)$
(D) none of these

MCQ 1.2.7 The period of the signal $g(t)=2 \cos (10 t+1)+\sin (4 t-1)$ is equal to
(A) 10 sec
(B) $\pi \mathrm{sec}$
(C) 2 sec
(D) 5 sec
mCQ 1.2.8 Consider the signals $x_{1}(t)=5 \cos \left(4 t+\frac{\pi}{3}\right), x_{2}(t)=e^{j(\pi t-1)}$ and $x_{3}(t)=\left[\cos \left(2 t-\frac{\pi}{3}\right)\right]^{2}$ Which signals is/are aperiodic
(A) $x_{3}(t)$ only
(B) $x_{2}(t)$ and $x_{3}(t)$
(C) $x_{2}(t)$ only
(D) none of above

MCQ 1.2.9 Consider a signal $g(t)$ defined as $g(t)=\left\{\begin{array}{ll}t, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{array}\right.$. The odd part of $g(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.2.10 A signal $g(t)$ is defined as

$$
g(t)= \begin{cases}t, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}
$$

The even part of the signal $g(t)$ is
(A) $g_{e}(t)= \begin{cases}t / 2, & -1 \leq t<0 \\ t / 2, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$
(B) $g_{e}(t)= \begin{cases}-t / 2, & -1 \leq t<0 \\ t / 2, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$
(C) $g_{e}(t)= \begin{cases}-2 t, & -1 \leq t<0 \\ 2 t, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$
(D) $g_{e}(t)= \begin{cases}2 t, & -1 \leq t<0 \\ 2 t, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$

MCQ 1.2.11 A CT signal is defined as

$$
x(t)= \begin{cases}2, & t>0 \\ 0, & t<0\end{cases}
$$

The odd part of $x(t)$ is an unit
(A) step function
(B) signum function
(C) impulse function
(D) ramp function

MCQ 1.2.12 The odd part of a unit step signal is
(A)

(B)

(C)

(D)

MCQ 1.2.13 A signal $x(t)$ is shown in figure below

The odd part of the signal $g(t)=x\left(t-\frac{3}{4}\right)+x\left(t+\frac{3}{4}\right)$ will be
(A)

(B)

(C)

(D) None of above

MCQ 1.2.14 If $x_{e}(t)$ and $x_{o}(t)$ are the even and odd part of a signal $x(t)$, then which of the following is true?
(A) $x_{o}(0)=0$
(B) $x_{e}(0)=x(0)$
(C) $x_{o}(0)=x_{e}(0)=0$
(D) Both (A) and (B)

Statement For Q. 15 \& 16 :

The figure shows parts of a signal $x(t)$ and its odd part $x_{o}(t)$, for $t \geq 0$ only, that is $x(t)$ and $x_{o}(t)$ are not given for $t<0$.

MCQ 1.2.15 The complete odd part $x_{o}(t)$ of the signal will be
(A)

(B)

(C)

(D) Cannot be determined

MCQ 1.2.16 The complete even part $x_{e}(t)$ of the signal $x(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.2.17 A signal $x(t)$ is shown in figure below

The odd part of signal $x(t)$ is
(A)

(B)

(D)

mCQ 1.2.18 Two signals $g_{1}(t)$ and $g_{2}(t)$ are shown in the following figures

Which of the following statement is true ?
(A) $g_{1}(t)$ is a power signal, $g_{2}(t)$ is an energy signal.
(B) $g_{1}(t)$ is an energy signal, $g_{2}(t)$ is a power signal.
(C) Both $g_{1}(t)$ and $g_{2}(t)$ are power signals.
(D) Both $g_{1}(t)$ and $g_{2}(t)$ are energy signals.

MCQ 1.2.19 The average power $\left(P_{g}\right)$ and energy $\left(E_{g}\right)$ of the signal $g(t)$ shown in figure are

(A) $P_{g}=25, E_{g}=150$
(B) $P_{g}=0, E_{g}=150$
(C) $P_{g}=25, E_{g}=\infty$
(D) $P_{g}=25, E_{g}=50$

MCQ 1.2.20 The energy and average power of a signal $x(t)$ as shown in figure are respectively :

(A) 100,0
(B) $\infty, 25$
(C) 50,0
(D) $\infty, 12.5$

MCQ 1.2.21 The energy of the signal shown in figure is

(A) $A^{2} / 2$
(B) A^{2}
(C) $A^{2} / 4$
(D) None of above

MCQ 1.2.22 The power and rms value of a voltage signal $x(t)=20 \cos (5 t) \cos (10 t) \mathrm{V}$ are respectively :
(A) $200 \mathrm{~W}, 14.14$ volt
(B) $100 \mathrm{~W}, 7.07$ volt
(C) $100 \mathrm{~W}, 10$ volt
(D) $200 \mathrm{~W}, 10$ volt

MCQ 1.2.23 The signal $x(t)=e^{j\left(2 t+\frac{\pi}{4}\right)}$ is
(A) a power signal
(B) an energy signal
(C) neither a power nor an energy
(D) none of above

MCQ 1.2.24 The power of a periodic signal shown in figure is

(A) 56 unit
(B) 8 unit
(C) 11.2 unit
(D) 32 unit

MCQ 1.2.25 A signal $x(t)$, defined over the range $-3 \leq t \leq 3$, has energy equal to 12 units. Match List I (signal) with List II (Energy of the signal) and select correct answer using the codes given below

List I (Signal)

P. $2 x(t)$
Q. $x(3 t)$
R. $x(t-4)$
S. $2 x(2 t)$

List II (Energy)

1. 48 unit
2. 12 unit
3. 4 unit
4. 24 unit

Codes:

	P	Q	R	S
(A)	1	3	2	4
(B)	4	3	1	2
(C)	1	4	3	2
(D)	4	1	2	3

MCQ 1.2.26 Consider the following statements regarding a signal $x(t)=e^{-|t|}$.

1. $x(t)$ is an energy signal
2. $x(t)$ is an odd signal
3. $x(t)$ is an even signal
4. $x(t)$ is neither even nor odd.

Which of the above statement is/are true?
(A) only 4
(B) 1 and 3
(C) 1 and 4
(D) 1 and 2
mcQ 1.2.27 Consider the signals $x_{1}(t), x_{2}(t)$ and $y(t)$ as shown in below :

Which of the following relation is true?
(A) $y(t)=x_{1}(t) x_{2}(t)$
(B) $y(t)=x_{1}(t)+x_{2}(t)$
(C) $y(t)=x_{1}(t)-x_{2}(t)$
(D) none of above

MCQ 1.2.28 Two CT signals $f(t)$ and $g(t)$ are shown in following figure:

The plot for a signal $x(t)=f(t) g(t-1)$ will be
(A)

(B)

(C)

(D)

MCQ 1.2.29 A continuous time signal is given as

$$
g(t)= \begin{cases}t+1, & -1 \leq t \leq 0 \\ 1, & 0 \leq t<2 \\ 0, & \text { elsewhere }\end{cases}
$$

The correct expression for $g(2 t)$ is
(A) $g(2 t)= \begin{cases}\frac{t}{2}+1, & -0.5 \leq t \leq 0 \\ t, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$
(B) $g(2 t)= \begin{cases}2 t+1, & -0.5 \leq t \leq 0 \\ 2, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$
(C) $g(2 t)= \begin{cases}t+1, & -0.5 \leq t \leq 0 \\ 1, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$
(D) $g(2 t)= \begin{cases}2 t+1, & -0.5 \leq t \leq 0 \\ 1, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}$
mCQ 1.2.30 Consider a signal $g(t)$ defined as following

$$
g(t)= \begin{cases}t+1, & -1 \leq t \leq 0 \\ 1, & 0 \leq t \leq 2 \\ -t+3, & 2 \leq t \leq 3 \\ 0, & \text { elsewhere }\end{cases}
$$

The waveform of signal $g(t / 2)$ is
(A)

(B)

(C)

(D)

MCQ 1.2.31 Two signals $f(t)$ and $g(t)$ are shown in the figure below

Which of the following is the correct expression of $f(t)$?
(A) $f(t)=g(t)+g(t+2)+g(t+3)$
(B) $f(t)=g(t)+g(t-2)+g(t-3)$
(C) $f(t)=g(t)+g(t / 2)+g(t / 3)$
(D) $f(t)=g(t)+g(2 t)+g(3 t)$

MCQ 1.2.32 Consider a unit triangular function $\Delta(t)$ and a unit rectangular function $\Pi(t)$ as shown in figure

Which of the following waveform is correct for $g(t)=3 \Delta(2 t / 3)+3 \Pi(t / 3)$
(A)

(C)

(B)

(D)

mCQ 1.2.33 Time compression of a signal
(A) Reduces its energy
(B) increases its energy
(C) does not effect the energy
(D) none of above.

MCQ 1.2.34 A CT signal is shown below

The plot of signal $g(t+2)$ is
(A)

(B)

(C)

(D)

mCQ 1.2.35 Consider the signal $x(t)$ and $y(t)$ shown is figures

Which of the following is correct statement ?
(A) $y(t)$ is amplitude scaled version of $x(t)$
(B) $y(t)$ is time scaled version of $x(t)$ by a factor of 2 .
(C) $y(t)$ is time advanced version of $x(t)$ by 2 units.
(D) $y(t)$ is time delayed version of $x(t)$ by 2 units.
mcQ 1.2.36 The plot of a signal $x(t)$ is shown in figure

If $x(t)$ is delayed by 3 sec , then plot will be
(A)

(B)

(C)

(D)

Statement For Q. $37 \& 38$

Consider the signal $g(t)$ as shown in figure

MCQ 1.2.37 Plot for signal $g(t-2)$ will be
(A)

(B)

(C)

(D)

MCQ 1.2.38 Plot for signal $g(-t+1)$ will be
(A)

(B)

(C)

(D)

MCQ 1.2.39 If the energy of a signal $x(t)$ is E_{x} then what will be the energy for a signal $x(a t-b)$?
(A) $\frac{E_{x}}{a}$
(B) $\left(\frac{b}{a}\right) E_{x}$
(C) $\frac{1}{a} E_{x}+b$
(D) $\left(\frac{1}{a}+b\right) E_{x}$
mCQ 1.2.40 Consider a signal $f(t)$ as shown is figure

The plot of signal $f(4-2 t)$ is
(A)

(B)

(C)

(D)

MCQ 1.2.41 If plot of a signal $f(t)$ is shown in figure below

Then the plot of signal $f(-t-3)$ will be
(A)

(B)

(C)

(D)

MCQ 1.2.42 A signal $x(t)$ and its transformed signal $y(t)$ are shown in figure(A) and figure(B) respectively

Fig (A)

Fig (B)

If $y(t)=x(a t+b)$, then values of a and b are respectively
(A) $3,-2$
(B) $-3,6$
(C) $3,-6$
(D) $-2,3$
mCQ 1.2.43 Consider two signals $x_{1}(t)$ and $x_{2}(t)$ as shown below

Which of the following procedure is correct to obtain $x_{2}(t)$ from $x_{1}(t)$?
(A) First compress $x_{1}(t)$ by a factor of 3 , then shift to the right by 6 time units.
(B) First expand $x_{1}(t)$ by a factor of 6 , then shift to the right by 3 time units.
(C) First compress $x_{1}(t)$ by a factor of 3 , then shift to the right by 2 time units.
(D) First shift $x_{1}(t)$ to the right by 2 time units then expand by a factor of 3 .

Statement For Q. $44 \& 45$

The plot of a signal $x(t)$ is shown in figure

mCQ 1.2.44 Plot for the signal $x_{1}(t)=x[0.5(t-2)]$ will be
(A)

(B)

(C)

(D)

MCQ 1.2.45 Plot for the signal $x_{2}(t)=x(-0.5 t-1)$ will be
(A)

(B)

(C)

(D)

Statement For Q. $46 \& 47$

Consider two CT signal $x(t)$ and $y(t)$ shown in figure below

MCQ 1.2.46 Which of the following relation is true ?
(A) $y(t)=x(2 t-8)$
(B) $y(t)=x(2 t-4)$
(C) $y(t)=x\left(\frac{t}{2}-2\right)$
(D) $y(t)=x\left(\frac{t}{2}-4\right)$

MCQ 1.2.47 The sketch of signal $x(2-t)$ will be
(A)

(B)

(C)

(D)

mCQ 1.2.48 Consider two signals $x(t)$ and $y(t)$ shown in figure below 1.4

If $y(t)=A x\left(\frac{t-t_{0}}{W}\right)$ then, the values of A, t_{0} and W are respectively.
(A) $-2,0,2$
(B) $-2,1, \frac{1}{2}$
(C) $-2,0, \frac{1}{2}$
(D) $2,1,2$

MCQ 1.2.49 A signal $x(t)$ is shown in the following figure

The plot for a transformed signal $y(t)=-6 x\left(\frac{t-1}{2}\right)$ will be
(A)

(B)

(C)

(D) None of above

MCQ 1.2.50 A signal $x(t)$ is transformed into another signal $y(t)$ given as $y(t)=x\left(1-\frac{t}{2}\right)$

The waveform of the original signal $x(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.2.51 If $\delta(t)$ is an unit impulse function, then the value of integral $\int_{-\infty}^{\infty} e^{-t} \delta(2 t-2) d t$
(A) $\frac{1}{2}$
(B) $\frac{1}{e}$
(C) $\frac{1}{2 e}$
(D) 1

MCQ 1.2.52 For an unit impulse function $\delta(t)$, which of the following is true?
(A) $\delta\left[a\left(t-t_{0}\right)\right]=\frac{1}{|a|} \delta(t)$
(B) $\delta\left[a\left(t-t_{0}\right)\right]=|a| \delta\left(t-t_{0}\right)$
(C) $\delta\left[a\left(t-t_{0}\right)\right]=\frac{1}{|a|} \delta\left(t-t_{0}\right)$
(D) $\delta\left[a\left(t-t_{0}\right]=|a| \delta(t)\right.$

MCQ 1.2.53 If $\delta(t)$ is an unit impulse function then which of the following waveform represents a signal $g(t)=6 \delta(3 t+9)$?
(A)

(B)

(C)

(D)

MCQ 1.2.54 What is the numerical value of the following integral

$$
x(t)=\int_{-\infty}^{\infty} \delta(t+5) \cos (\pi t) d t
$$

(A) 1
(B) -1
(C) 0
(D) 5

MCQ 1.2.55 If $r(t)$ is a unit ramp function, then plot for signal $r(-t+2)$ will be
(A)

(B)

(C)

(D)

MCQ 1.2.56 Consider three signals $\quad x_{1}(t)=u(t)-u(t-1), \quad x_{2}(t)=r(t)-r(t-2) \quad$ and $x_{3}(t)=\left(1+e^{-6 t}\right) u(t)$ where $u(t)$ and $r(t)$ are unit-step function and unit-ramp function respectively. Which of the above signals have finite energy?
(A) $x_{1}(t)$ and $x_{3}(t)$
(B) $x_{1}(t)$ only
(C) $x_{2}(t)$ and $x_{3}(t)$
(D) $x_{2}(t)$ only

MCQ 1.2.57 For a signal $x(t)=u(t+2)-2 u(t)+u(t-2)$ the waveform is
(A)

(B)

(C)

(D)

MCQ 1.2.58 Which of the following is correct waveform of a signal $x(t)$ given as below

$$
x(t)=-u(t+3)+2 u(t+1)-2 u(t-1)+u(t-3)
$$

(A)

(B)

(C)

(D)

mCQ 1.2.59 Consider a signal $x(t)$ which is a linear combination of ramp signals given as

$$
x(t)=r(t+2)-r(t+1)-r(t-1)+r(t-2)
$$

The correct waveform of $x(t)$ is
(A)

(B)

(C)

(D)

EXCERCISE 1.3

MCQ 1.3.1 The period of signal $x(t)=14+50 \cos 60 t$ is
(A) $\frac{\pi}{30} \mathrm{sec}$
(B) $60 \pi \mathrm{sec}$
(C) $\frac{1}{60 \pi} \mathrm{sec}$
(D) Not periodic

MCQ 1.3.2 The period of signal $x(t)=10 \sin 5 t-4 \cos 7 t$ is
(A) $\frac{24 \pi}{35}$
(B) $\frac{4 \pi}{35}$
(C) 2π
(D) Not periodic

MCQ 1.3.3 The period of signal $x(t)=5 t-2 \cos 5000 \pi t$ is
(A) 0.96 ms
(B) 1.4 ms
(C) 0.4 ms
(D) Not periodic

MCQ 1.3.4 The period of signal $x(t)=4 \sin 3 t+3 \sin \sqrt{t}$ is
(A) $\frac{2 \pi}{3} \mathrm{sec}$
(B) $\frac{2 \pi}{\sqrt{3}} \mathrm{sec}$
(C) $2 \pi \mathrm{sec}$
(D) Not periodic

Statement for Q. 5 \& 6
Consider the signal shown below

MCQ 1.3.5 The even part of signal is
(A)

(B)

(C)

(D)

MCQ 1.3.6 The odd part of signal is
(A)

(B)

(C)

(D)

MCQ 1.3.7 Consider the function $x(t)$ shown in figure

The even part of $x(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.3.8 The signal $x(t)=e^{-4 t} u(t)$ is a
(A) power signal with power $P_{x}=1 / 4 \quad$ (B) power signal with power $P_{x}=0$
(C) energy signal with energy $E_{x}=1 / 4$
(D) energy signal with energy $E_{x}=0$

MCQ 1.3.9 The signal $x(t)=e^{j\left(2 t+\frac{\pi}{4}\right)}$ is a
(A) power signal with $P_{x}=1$
(B) power signal with $P_{x}=2$
(C) energy signal with $E_{x}=2$
(D) energy signal with $E_{x}=1$

MCQ 1.3.10 The raised cosine pulse $x(t)$ is defined as

$$
x(t)=\left\{\begin{array}{cc}
\frac{1}{2}(\cos \omega t+1), & -\frac{\pi}{\omega} \leq t \leq \frac{\pi}{\omega} \\
0, & \text { otherwise }
\end{array}\right.
$$

The total energy of $x(t)$ is
(A) $\frac{3 \pi}{4 \omega}$
(B) $\frac{3 \pi}{8 \omega}$
(C) $\frac{3 \pi}{\omega}$
(D) $\frac{3 \pi}{2 \omega}$

Statement for Q. 11-14 :

Consider the six signals shown in figure below.

MCQ 1.3.11 The signal $f_{1}(t)$ can be expressed as
(A) $x(t-1)+y(t+1)$
(B) $x(t-1)+y(t-1)$
(C) $x(t+1)+y(t+1)$
(D) $x(t+1)+y(t-1)$

MCQ 1.3.12 The signal $f_{2}(t)$ can be expressed as
(A) $x(t-1)+y(t+1)$
(B) $x(t-1)+y(t-1)$
(C) $x(t+1)+y(t+1)$
(D) $x(t+1)+y(t-1)$

MCQ 1.3.13 The signal $f_{3}(t)$ can be expressed as
(A) $x(t-0.5)+y(t+0.5)$
(B) $x(t+0.5)+y(t+0.5)$
(C) $x(t-0.5)+y(t-0.5)$
(D) $x(t+0.5)+y(t-0.5)$

MCQ 1.3.14 The signal $f_{4}(t)$ can be expressed as
(A) $1.5 x(2 t-2)$
(B) $1.5 x\left(\frac{t-1}{2}\right)$
(C) $1.5 x(2 t-1)$
(D) $1.5 x\left(\frac{t}{2}-1\right)$

Statement for Q. 15-19 :

The signal $x(t)$ is depicted in figure below :

MCQ 1.3.15 The trapezoidal pulse $y(t)$ is related to the $x(t)$ as $y(t)=x(10 t-5)$. The sketch of $y(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.3.16 The trapezoidal pulse $x(t)$ is time scaled producing $y(t)=x(5 t)$. The sketch for $y(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.3.17 The trapezoidal pulse $x(t)$ is time scaled producing $y(t)=x\left(\frac{t}{5}\right)$. The sketch for $y(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.3.18 The trapezoidal pulse $x(t)$ is applied to a differentiator, defined by $y(t)=\frac{d x(t)}{d t}$. The total energy of $y(t)$ is
(A) 0
(B) 1
(C) 2
(D) 3

MCQ 1.3.19 The total energy of $x(t)$ is
(A) 0
(B) 13
(C) $13 / 3$
(D) $26 / 3$

MCQ 1.3.20 Consider the two signal shown in figure below.

The signal $y(t)$ can be represented as
(A) $2 x\left(\frac{1}{2} t+2\right)+2$
(B) $2 x(2 t-2)-2$
(C) $-2 x(-2 t+2)+2$
(D) $-2 x\left(-\frac{1}{2} t+4\right)+2$

MCQ 1.3.21 The numerical value of integral $\int_{-1}^{8}[\delta(t+3)-2 \delta(4 t)] d t$ is
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) 2
(D) -2

MCQ 1.3.22 The graph of function $x(t)=2 \delta(2 t)+6 \delta(3(t-2))$ is
(A)

(B)

(C)

(D)

MCQ 1.3.23 The function $\int_{-\infty}^{\infty} x(\tau)[\delta(\tau-2)+\delta(\tau+2)] d \tau$ is equal to
(A) $x(2)+x(-2)$
(B) $\frac{x(2)+x(-2)}{2}$
(C) $2 x(2)+2 x(-2)$
(D) None of these
mcQ 1.3.24 The value of the function $\int_{-\infty}^{\infty} \delta(a t-b) \sin ^{2}(t-4) d t$ where $a>0$, is
(A) 1
(B) $\frac{\sin ^{2}\left(\frac{a}{b}-4\right)}{b}$
(C) 0
(D) $\frac{\sin ^{2}\left(\frac{b}{a}-4\right)}{a}$

MCQ 1.3.25 Consider the function $x(t)=u\left(t+\frac{1}{2}\right) \operatorname{ramp}\left(\frac{1}{2}-t\right)$. The graph of $x(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.3.26 Consider the signal $x(t)=\operatorname{rect}(t) \operatorname{tri}(t)$. The graph of $x(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.3.27 A signal is defined as $x(t)=4 \operatorname{tri}(t)$. The value of $x\left(\frac{1}{2}\right)$ is
(A) $1 / 2$
(B) 1
(C) 2
(D) 0

MCQ 1.3.28 Consider the signal $x(t)=3 \operatorname{tri}\left(\frac{2 t}{3}\right)+3 \operatorname{rect}\left(\frac{t}{3}\right)$. The graph of $x(t)$ is
(A)

(B)

(C)

(D)

Statement for Q. 29-30 :

Let the CT unit impulse function be defined by

$$
\delta(x)=\lim _{\alpha \rightarrow 0}\left(\frac{1}{\alpha}\right) \operatorname{tri}\left(\frac{x}{\alpha}\right), a>0
$$

The function $\delta(x)$ has an area of one regardless the value of α
mcQ 1.3.29 What is the area of the function $\delta(4 x)$?
(A) 1
(B) $\frac{1}{4}$
(C) 4
(D) 2

MCQ 1.3.30 What is the area of the function $\delta(-6 x)$?
(A) 1
(B) $1 / 6$
(C) 4
(D) 2

MCQ 1.3.31 A signal $x(t)$ is defined as $x(t)=2 \operatorname{tri}[2(t-1)]+6 \operatorname{rect}\left(\frac{t}{4}\right)$. The value of $x\left(\frac{3}{2}\right)$ is
(A) 4
(B) 5
(C) 6
(D) 7

MCQ 1.3.32 A function is defined as $x(t)=1+\operatorname{sgn}(4-t)$. The graph of $x(t)$ is
(A)

(B)

(C)

(D)

MCQ 1.3.33 Consider the voltage waveform shown below The equation for $v(t)$ is

(A) $u(t-1)+u(t-2)+u(t-3)$
(B) $u(t-1)+2 u(t-2)+3 u(t-3)$
(C) $u(t-1)+u(t-2)+u(t-2)$
(D) $u(t-1)+u(t-2)+u(t-3)-3 u(t-4)$

MCQ 1.3.34 Consider the following function for the rectangular voltage pulse shown below

(1) $v(t)=u(a-t) \times u(t-b)$
(2) $v(t)=u(b-t) \times u(t-a)$
(3) $v(t)=u(t-a)-u(t-b)$

The function that describe the pulse are
(A) 1 and 2
(B) 2 and 3
(C) 1 and 3
(D) all

MCQ 1.3.35 A signal is described by $x(t)=r(t-4)-r(t-6)$, where $r(t)$ is a ramp function starting at $t=0$. The signal $x(t)$ is represented as
(A)

(B)

(C)

(D)

MCQ 1.3.36 For the waveform shown in figure the equation is

(A) $-3 t u(t)+1.5(t-2) u(t-1)+1.5(t-3) u(t-3)$
(B) $3(2-t) u(t)+1.5(t-2) u(t-1)+1.5(t-3) u(t-3)$
(C) $3(1-t) u(t)+1.5 t u(t-1)+1.5(t-2) u(t-3)$
(D) None of these

MCQ 1.3.37 For the signal $x(t)=u(t+1)-2 u(t-1)+u(t-3)$, the correct wave form is
(A)

(B)

(C)

(D)

MCQ 1.3.38 For the signal $x(t)=u(t)+u(t+1)-2 u(t+2)$, the correct waveform is
(A)

(B)

(C)

(D)

MCQ 1.3.39 For the signal $x(t)=2(t-1) u(t-1)-2(t-2) u(t-2)+2(t-3) u(t-3)$ the correct waveform is
(A)

(B)

(C)

(D)

MCQ 1.3.40 For the signal $x(t)=(t+1) u(t-1)-t u(t)-u(t-2)$ the correct waveform is
(A)

(B)

(C)

(D)

MCQ 1.3.41 Consider the two signal shown in figure

The signal $y(t)$ can be explained as
(A) $x\left(\frac{1}{2} t-1\right)+x\left(\frac{2}{3} t-\frac{5}{3}\right)+x(t-3)+x(2 t-7)$
(B) $x(2 t+1)+x\left(\frac{3}{2} t+\frac{5}{3}\right)+x(t+3)+x(2 t+7)$
(C) $x\left(\frac{1}{2} t+1\right)+x\left(\frac{2}{3} t+\frac{5}{3}\right)+(t+3)+x(2 t+7)$
(D) $x(2 t-1)+x\left(\frac{3}{2} t-\frac{5}{3}\right)+x(t-3)+x(2 t-7)$

Statement for Q. 42-43 :

Consider the triangular pulses and the triangular wave of figure

MCQ 1.3.42 The mathematical function for $x_{1}(t)$ is
(A) $2 t u(t)-4(t+1) u(t-1)+2(t+2) u(t-2)$
(B) $2 t u(t)-4(t-1) u(t-1)+2(t-2) u(t-2)$
(C) $2 t u(t)-4(t-1) u(t+1)+2(t-2) u(t+2)$
(D) None of the above

MCQ 1.3.43 The mathematical function for waveform $x(t)$ is
(A) $\sum_{k=0}^{\infty} x_{1}(t+2 k)$
(B) $\sum_{k=-\infty}^{\infty} x_{1}(t-2 k)$
(C) $\sum_{k=0}^{\infty} x_{1}(t-2 k)$
(D) $\sum_{k=-\infty}^{\infty} x_{1}(t+2 k)$

Here, $T_{0}=2$, therefore

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{1}(t-2 k)
$$

EXCERCISE 1.4

MCQ 1.4.1 A function of one or more variable which conveys information on the nature of IES EC 2009 physical phenomenon is called
(A) Noise
(B) Interference
(C) System
(D) Signal

McQ 1.4.2 The Fourier series for a periodic signal is given as
GATE IN $2006 \quad x(t)=\cos (1.2 \pi t)+\cos (2 \pi t)+\cos (2.8 \pi t)$
The fundamental frequency of the signal is
(A) 0.2 Hz
(B) 0.6 Hz
(C) 1.0 Hz
(D) 1.4 Hz

MCQ 1.4.3 Consider the periodic signal $x(t)=(1+0.5 \cos 40 \pi t) \cos 200 \pi t$, where t is in seconds.
GATE IN 2007 Its fundamental frequency, in Hz , is
(A) 20
(B) 40
(C) 100
(D) 200

MCQ 1.4.4 The fundamental period of $x(t)=2 \sin 2 \pi t+3 \sin 3 \pi t$, with t expressed in seconds, GATE IN 2009 is
(A) 1 s
(B) 0.67 s
(C) 2 s
(D) 3 s

MCQ 1.4.5 The period of the function $\cos [\pi / 4(t-1)]$ is
IES EC 1999
(A) $1 / 8 \mathrm{~s}$
(B) 8 s
(C) 4 s
(D) $1 / 4 \mathrm{~s}$

MCQ 1.4.6 If $x_{1}(t)=2 \sin \pi t+\cos 4 \pi t$ and $x_{2}(t)=\sin 5 \pi t+3 \sin 13 \pi t$, then
IES EC 2001
(A) x_{1} and x_{2} both are periodic
(B) x_{1} and x_{2} both are not periodic
(C) x_{1} is periodic, but x_{2} is not periodic
(D) x_{1} is not periodic, but x_{2} is periodic

MCQ 1.4.7 The sum of two or more arbitrary sinusoids is
IES EC 2003 (A) Always periodic
(B) Periodic under certain conditions
(C) Never periodic
(D) Periodic only if all the sinusoids are identical in frequency and phase

MCQ 1.4.8 Which one of the following must be satisfied if a signal is to be periodic for IES EC $2004 \quad-\infty<t<\infty$?
(A) $x\left(t+T_{0}\right)=x(t)$
(B) $x\left(t+T_{0}\right)=d x(t) / d t$
(C) $x\left(t+T_{0}\right)=\int_{t}^{T_{0}} x(t) d t$
(D) $x\left(t+T_{0}\right)=x(t)+k T_{0}$

MCQ 1.4.9 Consider two signals $x_{1}(t)=e^{j 20 t}$ and $x_{2}(t)=e^{(-2+j) t}$. Which one of the following IES EC 2007 statements is correct?
(A) Both $x_{1}(t)$ and $x_{2}(t)$ are periodic
(B) $x_{1}(t)$ is periodic but $x_{2}(t)$ is not periodic
(C) $x_{2}(t)$ is periodic but $x_{1}(t)$ is not periodic
(D) Neither $x_{1}(t)$ nor $x_{2}(t)$ is periodic

MCQ 1.4.10 Which one of the following function is a periodic one?
IES EC 2008
(A) $\sin (10 \pi t)+\sin (20 \pi t)$
(B) $\sin (10 t)+\sin (20 \pi t)$
(C) $\sin (10 \pi t)+\sin (20 t)$
(D) $\sin (10 t)+\sin (25 \pi t)$

MCQ 1.4.11 The period of the signal $x(t)=8 \sin \left(0.8 \pi t+\frac{\pi}{4}\right)$ is GATE EE 2010
(A) $0.4 \pi \mathrm{~s}$
(B) $0.8 \pi \mathrm{~s}$
(C) 1.25 s
(D) 2.5 s

MCQ 1.4.12 A signal $x_{1}(t)$ and $x_{2}(t)$ constitute the real and imaginary parts respectively of a IES EC 2009 complex valued signal $x(t)$. What form of waveform does $x(t)$ possess ?
(A) Real symmetric
(B) Complex symmetric
(C) Asymmetric
(D) Conjugate symmetric

MCQ 1.4.13 If from the function $f(t)$ one forms the function, $\Psi(t)=f(t)+f(-t)$, then $\Psi(t)$ is IES EC 1991
(A) even
(B) odd
(C) neither even nor odd
(D) both even and odd

MCQ 1.4.14 The signal $x(t)=A \cos (\omega t+\phi)$ is
IES EC 2001
(A) an energy signal
(B) a power signal
(C) an energy as well as a power signal
(D) neither an energy nor a power signal

MCQ 1.4.15 Which one of the following is the mathematical representation for the average IES EC 2007 power of the signal $x(t)$?
(A) $\frac{1}{T} \int_{0}^{T} x(t) d t$
(B) $\frac{1}{T} \int_{0}^{T} x^{2}(t) d t$
(C) $\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) d t$
(D) $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x^{2}(t) d t$

MCQ 1.4.16 Which one of the following is correct ?
IES EC 2007 Energy of a power signal is
(A) finite
(B) zero
(C) infinite
(D) between 1 and 2
mCQ 1.4.17 The power in the signal $s(t)=8 \cos \left(20 \pi-\frac{\pi}{2}\right)+4 \sin (15 \pi t)$ is GATE EC 2005
(A) 40
(B) 41
(C) 42
(D) 82

MCQ 1.4.18 Which of the following is true ?
GATE EE 2006 (A) A finite signal is always bounded
(B) A bounded signal always possesses finite energy
(C) A bounded signal is always zero outside the interval $\left[-t_{0}, t_{0}\right]$ for some t_{0}
(D) A bounded signal is always finite

MCQ 1.4.19 If a signal $f(t)$ has energy E, the energy of the signal $f(2 t)$ is equal to GATE EC 2001
(A) 1
(B) $E / 2$
(C) $2 E$
(D) $4 E$

MCQ 1.4.20 IES EC 2001

If a function $f(t) u(t)$ is shifted to right side by t_{0}, then the function can be expressed as
(A) $f\left(t-t_{0}\right) u(t)$
(B) $f(t) u\left(t-t_{0}\right)$
(C) $f\left(t-t_{0}\right) u\left(t-t_{0}\right)$
(D) $f\left(t+t_{0}\right) u\left(t+t_{0}\right)$

MCQ 1.4.21 If a plot of signal $x(t)$ is as shown in the figure IES EC 1999

then the plot of the signal $x(1-t)$ will be
(A)

(B)

(C)

(D)

MCQ 1.4.22 A signal $v[n]$ is defined by
IES EC 2005

$$
v[n]= \begin{cases}1 & ; n=1 \\ -1 & ; n=-1 \\ 0 & ; n=0 \text { and }|n|>1\end{cases}
$$

Which is the value of the composite signal defined as $v[n]+v[-n]$?
(A) 0 for all integer values of n
(B) 2 for all integer values of n
(C) 1 for all integer values of n
(D) -1 for all integer values of n

MCQ 1.4.23 Which one of the following relations is not correct ?
IES EC 2011
(A) $f(t) \delta(t)=f(0) \delta(t)$
(B) $\int_{-\infty}^{\infty} f(t) \delta(\tau) d \tau=1$
(C) $\int_{-\infty}^{\infty} \delta(\tau) d \tau=1$
(D) $f(t) \delta(t-\tau)=f(\tau) \delta(t-\tau)$

MCQ 1.4.24 The Dirac delta function $\delta(t)$ is defined as GATE EC 2006
(A) $\delta(t)=\left\{\begin{array}{cc}1 & t=0 \\ 0 & \text { otherwise }\end{array}\right.$
(B) $\delta(t)= \begin{cases}\infty & t=0 \\ 0 & \text { otherwise }\end{cases}$
(C) $\delta(t)=\left\{\begin{array}{ll}1 & t=0 \\ 0 & \text { otherwise }\end{array}\right.$ and $\int_{-\infty}^{\infty} \delta(t) d t=1$
(D) $\delta(t)=\left\{\begin{array}{cc}\infty & t=0 \\ 0 & \text { otherwise }\end{array}\right.$ and $\int_{-\infty}^{\infty} \delta(t) d t=1$
mCQ 1.4.25 Let $\delta(t)$ denote the delta function. The value of the integral $\int_{-\infty}^{\infty} \delta(t) \cos \left(\frac{3 t}{2}\right) d t$ is GATE EC 2001
(A) 1
(B) -1
(C) 0
(D) $\frac{\pi}{2}$

MCQ 1.4.26 The Integral $\int_{-\infty}^{\infty} \delta\left(t-\frac{\pi}{6}\right) 6 \sin (t) d t$ evaluates to
GATE IN 2010 GATE IN 2010
(A) 6
(B) 3
(C) 1.5
(D) 0

MCQ 1.4.27 The integral $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} t^{2} e^{-t^{2} / 2} \delta(1-2 t) d t$ is equal to GATE IN 2011
(A) $\frac{1}{8 \sqrt{2 \pi}} e^{-1 / 8}$
(B) $\frac{1}{4 \sqrt{2 \pi}} e^{-1 / 8}$
(C) $\frac{1}{\sqrt{2 \pi}} e^{-1 / 2}$
(D) 1

MCQ 1.4.28 Double integration of a unit step function would lead to IES EC 1995
(A) an impulse
(B) a parabola
(C) a ramp
(D) a doublet

MCQ 1.4.29 The function $x(t)$ is shown in the figure. Even and odd parts of a unit step function GATE EC $2005 u(t)$ are respectively,

(A) $\frac{1}{2}, \frac{1}{2} x(t)$
(B) $-\frac{1}{2}, \frac{1}{2} x(t)$
(C) $\frac{1}{2},-\frac{1}{2} x(t)$
(D) $-\frac{1}{2},-\frac{1}{2} x(t)$

MCQ 1.4.30 The expression for the wave form in terms of step function is given by IES EC 1991

(A) $v(t)=u(t-1)-u(t-2)+u(t-3)$
(B) $v(t)=u(t-1)+u(t-2)+u(t-3)$
(C) $v(t)=u(t-1)+u(t-2)-u(t-3)$
(D) $v(t)=u(t-1)+u(t-2)+u(t-3)-3 u(t-4)$

MCQ 1.4.31 The impulse train shown in the figure represents the second derivative of a function IES EC 1991 $f(t)$. The value of $f(t)$ is

(A) $-t u(t-1)-t u(t-2)+t u(t-3)+t u(t-4)-t u(t-5)+2 t u(t-6)-t u(t-7)$
(B) $-t u(t-1)-t u(t-2)-t u(t-3)-t u(t-4)+t u(t-5)$
(C) $t u(t-3)+t u(t-4)+2 t u(t-6)$
(D) $t u(t+1)+t u(t+2)+t u(t+3)+t u(t+4)+t u(t+5)+2 t u(t+6)+t u(t+7)$

MCQ 1.4.32 Match List I with List II and select the correct answer using the codes given below IES EC 1997 the Lists:

List I

List II

1. $v(t)=u(t+1)$
B.

2. $v(t)=u(t-1)-2 u(t-1)+2 u(t-2)-2 u(t-3)+\ldots$
C.

3. $v(t)=u(t-1)-u(t-3)$
D.

4. $\operatorname{Lim}_{a-0} v(t)=\delta(t-1)$

Codes :

	A	B	C	D
(A)	1	2	3	4
(B)	3	4	1	2
(C)	4	3	2	1
(D)	4	3	1	2

mCQ 1.4.33 Consider the following waveform diagram

Which one of the following gives the correct description of the waveform shown in the above diagram?
(A) $u(t)+u(t-1)$
(B) $u(t)+(t-1) u(t-1)$
(C) $u(t)+u(t-1)+(t-2) u(t-2)$
(D) $u(t)+(t-2) u(t-2)$

MCQ 1.4.34 Match the waveforms on the left-hand side with the correct mathematical description GATE EE 1994 listed on the right hand side.
Waveform
$f(t)$
(P)

(1) $t u(t-1)$
(Q)

(2) $(t+1) u(t-1)$
(3) $t u(t)$
(R)

(4) $(t+1) u(t)$
(5) $(t-1) u(t)$
(S)

(B) P-3, Q-6, R-4, S-1
(A) P-1, Q-3, R-4, S-2
(d) P-2, Q-3, R-4, S-1

MCQ 1.4.35 In the graph shown below, which one of the following express $v(t)$? IES EC 2005

(A) $(2 t+6)[u(t-3)+2 u(t-4)]$
(B) $(-2 t-6)[u(t-3)+u(t-4)]$
(C) $(-2 t+6)[u(t-3)+u(t-4)]$
(D) $(2 t-6)[u(t-3)-u(t-4)]$

SOLUTIONS 1.1

SOLUTIONS 1.2

sol 1.2.1 Option (A) is correct.
Period of $\sin (4 \pi t), \quad T_{1}=\frac{2 \pi}{4 \pi}=\frac{1}{2}$
Period of $\cos (3 \pi t), \quad T_{2}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$
Ratio,

$$
\frac{T_{1}}{T_{2}}=\frac{1 / 2}{2 / 3}=\frac{3}{4}(\text { rational })
$$

So, the signal $x(t)$ is periodic.
Period of $x(t), \quad T=\operatorname{LCM}\left(T_{1}, T_{2}\right)=\operatorname{LCM}\left(\frac{1}{2}, \frac{2}{3}\right)=2 \mathrm{sec}$
Alternate Method :

$$
\frac{T_{1}}{T_{2}}=\frac{m}{n}
$$

Fundamental period of $x(t)$

$$
T=n T_{1}=m T_{2}
$$

Here

$$
\frac{T_{1}}{T_{2}}=\frac{3}{4}=\frac{m}{n}
$$

Thus $\quad m=3, n=4$
Period of $x(t), \quad T=n T_{1}=4 \times \frac{1}{2}=2 \mathrm{sec}$
or

$$
T=m T_{2}=3 \times \frac{2}{3}=2 \mathrm{sec}
$$

sol 1.2.2 Option (D) is correct.
Period of $\sin (4 \pi t), \quad T_{1}=\frac{2 \pi}{4 \pi}=\frac{1}{2}$
Period of $\cos (10 t), \quad T_{2}=\frac{2 \pi}{10}=\frac{\pi}{5}$
Here

$$
\frac{T_{1}}{T_{2}}=\frac{1 / 2}{\pi / 5}=\frac{5}{2 \pi}(\text { not rational })
$$

Since the ratio T_{1} / T_{2} is not rational, $x(t)$ is not periodic.
sol 1.2.3 Option (A) is correct.
For $x_{1}(t)$:
Period of $\sin (8 \pi t), \quad T_{1}=\frac{2 \pi}{8 \pi}=\frac{1}{4}$
Period of $\cos (6 \pi t), \quad T_{2}=\frac{2 \pi}{6 \pi}=\frac{1}{3}$

Now

$$
\frac{T_{1}}{T_{2}}=\frac{1 / 4}{1 / 3}=\frac{3}{4}(\text { rational })
$$

Ratio T_{1} / T_{2} is a rational number, therefore $x_{1}(t)$ is a periodic signal.
For $x_{2}(t)$:
Period of $\sin (8 \pi t), \quad T_{1}=\frac{2 \pi}{8 \pi}=\frac{1}{4}$
Period of $\cos (20 t), \quad T_{2}=\frac{2 \pi}{20}=\frac{\pi}{10}$
Check for periodicity $\quad \frac{T_{1}}{T_{2}}=\frac{1 / 4}{\pi / 10}=\frac{5}{2 \pi}$ (not rational)
Ratio T_{1} / T_{2} is not rational, therefore $x_{2}(t)$ is not periodic.
sOL 1.2.4 Option (C) is correct.

$$
\begin{aligned}
x(t) & =\sin \left[\left(\frac{2 \pi}{5}\right) t\right] \cos \left[\left(\frac{4 \pi}{3}\right) t\right] \quad \sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
& =\frac{1}{2}\left[\sin \left(\frac{2 \pi}{5}-\frac{4 \pi}{3}\right) t+\sin \left(\frac{2 \pi}{5}+\frac{4 \pi}{3}\right) t\right] \\
& =\frac{1}{2}\left[\sin \left(\frac{-14 \pi}{15}\right) t+\sin \left(\frac{26 \pi}{15}\right) t\right] \\
& =x_{1}(t)+x_{2}(t)
\end{aligned}
$$

Period of $x_{1}(t), \quad T_{1}=\frac{2 \pi}{(14 \pi / 15)}=\frac{15}{7}$
Period of $x_{2}(t), \quad T_{2}=\frac{2 \pi}{(26 \pi / 15)}=\frac{15}{13}$

$$
\frac{T_{1}}{T_{2}}=\frac{15 / 7}{15 / 13}=\frac{13}{7}=\frac{m}{n}(\text { rational })
$$

Here $m=13$ and $n=7$. Let period of $x(t)$ is T, then

$$
T=m T_{2}=n T_{1}
$$

Thus,

$$
T=13 \times \frac{15}{13}=15 \mathrm{sec}
$$

or

$$
T=7 \times \frac{15}{7}=15 \mathrm{sec}
$$

Alternate Method :

Period of $x(t), \quad T=\operatorname{LCM}\left(T_{1}, T_{2}\right)$

$$
\begin{aligned}
T & =\operatorname{LCM}\left(\frac{15}{7}, \frac{15}{13}\right) \\
& =15 \mathrm{sec}
\end{aligned}
$$

sol 1.2.5 Option (D) is correct
Period of $f_{1}(t), \quad T_{1}=\frac{2 \pi}{2 \pi / 3}=3$ unit
$f_{2}(t)$ can be written as

$$
\begin{aligned}
f_{2}(t) & =\frac{1}{2}\left[\sin \left(\frac{2 \pi}{5}-\frac{4 \pi}{3}\right) t+\sin \left(\frac{2 \pi}{5}+\frac{4 \pi}{3}\right) t\right] \\
& =\frac{1}{2}\left[\sin \left(\frac{-14 \pi}{15}\right) t+\sin \left(\frac{26 \pi}{15}\right) t\right]
\end{aligned}
$$

Let

$$
f_{2}(t)=f_{21}(t)+f_{22}(t)
$$

Period of $f_{21}(t), \quad T_{21}=\frac{2 \pi}{(14 \pi / 15)}=\frac{15}{7}$
Period of $f_{22}(t), \quad T_{22}=\frac{2 \pi}{(26 \pi / 15)}=\frac{15}{13}$
Ratio, $\quad \frac{T_{21}}{T_{22}}=\frac{15 / 7}{15 / 13}=\frac{13}{7}$ (rational)
So, $f_{2}(t)$ is periodic.
Period of $f_{2}(t), \quad T_{2}=\operatorname{LCM}\left(T_{21}, T_{22}\right)=\operatorname{LCM}\left(\frac{15}{7}, \frac{15}{13}\right)=15 \mathrm{sec}$
Period of $f_{3}(t), \quad T_{3}=\frac{2 \pi}{3}$ unit

$$
\begin{aligned}
f_{4}(t) & =f_{1}(t)-2 f_{3}(t) \\
\text { Ratio } \frac{T_{1}}{T_{3}} & =\frac{3}{2 \pi / 3}=\frac{9}{2 \pi} \text { (not rational) }
\end{aligned}
$$

Therefore $f_{4}(t)$ is aperiodic.
Codes, $\mathrm{P} \rightarrow 2, \mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 4, \mathrm{~S} \rightarrow 3$
sol 1.2.6 Option (C) is correct
Signal $\sin (10 \pi t) u(t)$ is not periodic as it is defined for $t>0$ only.
SOL 1.2.7 Option (B) is correct.
Let,

$$
g(t)=\underbrace{2 \cos (10 t+1)}_{g_{1}(t)}+\underbrace{\sin (4 t-1)}_{g_{2}(t)}
$$

Period of $g_{1}(t), \quad T_{1}=\frac{2 \pi}{10}=\frac{\pi}{5} \mathrm{sec}$
Period of $g_{2}(t), \quad T_{2}=\frac{2 \pi}{4}=\frac{\pi}{2} \mathrm{sec}$
Ratio, $\quad \frac{T_{1}}{T_{2}}=\frac{\pi / 5}{\pi / 2}=\frac{2}{5}$ (rational)
Therefore, $g(t)$ is periodic
Period of $g(t), \quad T=\operatorname{LCM}\left(T_{1}, T_{2}\right)=\operatorname{LCM}\left(\frac{\pi}{5}, \frac{\pi}{2}\right)=\pi$ sec
sOL 1.2.8 Option (D) is correct.
All the given signals are periodic.
Period of $x_{1}(t), \quad T_{1}=\frac{2 \pi}{4}=\frac{\pi}{2}$
Period of $x_{2}(t), \quad T_{2}=\frac{2 \pi}{\pi}=2$
Period of $x_{3}(t), \quad T_{3}=\frac{2 \pi}{4}=\frac{\pi}{2}$
None of the above signals is aperiodic.
sol 1.2.9 Option (C) is correct.
Odd part of $g(t)$,

$$
g_{o}(t)=\frac{1}{2}[g(t)-g(-t)]
$$

So,

$$
\begin{aligned}
g(-t) & = \begin{cases}-t, & 0 \leq-t<1 \\
0, & \text { elsewhere }\end{cases} \\
& = \begin{cases}-t, & -1<t \leq 0 \\
0, & \text { elsewhere }\end{cases}
\end{aligned}
$$

$$
g_{o}(t)= \begin{cases}t / 2, & -1 \leq t<0 \\ t / 2, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}
$$

sOL 1.2.10 Option (B) is correct.

$$
g(-t)= \begin{cases}-t, & -1 \leq t<0 \\ 0, & \text { elsewhere }\end{cases}
$$

Even part

$$
\begin{aligned}
g_{e}(t) & =\frac{1}{2}[g(t)+g(-t)] \\
& = \begin{cases}-t / 2, & -1 \leq t<0 \\
t / 2, & 0 \leq t<1 \\
0, & \text { elsewhere }\end{cases}
\end{aligned}
$$

Graphically :

sol 1.2.11 Option (B) is correct.
Odd part of $x(t), \quad x_{o}(t)=\frac{1}{2}[x(t)-x(-t)]$
This is shown graphically as below :

The function $x_{o}(t)$ is unit signum function.

sOL 1.2.12 Option (B) is correct.

Unit step signal is given as

Odd part is given by

$$
x(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}
$$

$$
x_{o}(t)=\frac{1}{2}[x(t)-x(-t)]
$$

This is shown graphically as below :

sol 1.2.13 Option (D) is correct.
Shift $x(t) 3 / 4$ units to the left and $3 / 4$ units to the right and then adding both together, we get $g(t)$ as shown below :

The signal $g(t)$ is symmetrical with respect to vertical axis so odd part $g_{o}(t)=0$
sol 1.2.14 Option (D) is correct.
For an odd signal

$$
\begin{aligned}
x_{o}(-t) & =-x_{o}(t) \\
x_{o}(t) & =-x_{o}(-t) \\
x_{o}(0) & =-x_{o}(-0)
\end{aligned}
$$

The only number with $a=-a$ is $a=0$ so $x_{o}(0)=0$
For a signal we write

$$
x(t)=x_{e}(t)+x_{o}(t)
$$

For $t=0$,

$$
\begin{aligned}
x(0) & =x_{e}(0)+x_{o}(0) \\
& =x_{e}(0)+0=x_{e}(0)
\end{aligned}
$$

Since $x_{o}(0)=0$
sOL 1.2.15 Option (B) is correct.
For any odd signal $x_{o}(-t)=-x_{o}(t)$. Thus the complete odd part is in option (B).

SOL 1.2.16 Option (D) is correct.
For any signal

$$
x(t)=x_{e}(t)+x_{o}(t)
$$

or

$$
x_{e}(t)=x(t)-x_{o}(t)
$$

Since we have $x(t)$ and $x_{o}(t)$ for $t \geq 0$ only, from above equation we can plot $x_{e}(t)$ for $t \geq 0$ as shown below.

Even part of any signal is symmetric about vertical axis that is $x_{e}(-t)=x_{e}(t)$.
Thus the complete even part is as shown above.

SOL 1.2.17 Option (D) is correct.
Given signal is shown below :

By folding the signal with respect to vertical axis

Odd part, $\quad x_{o}(t)=\frac{1}{2}[x(t)-x(-t)]$
which is shown below

SOL 1.2.18 Option (B) is correct.
For signal $g_{1}(t)$
Energy, $\quad E_{1}=\int_{-\infty}^{\infty}\left|g_{1}(t)\right|^{2} d t=\int_{-2}^{2} 25 d t=100$
Average Power, $\quad P_{1}=\lim _{T \rightarrow \infty} \frac{1}{T} E_{1}=0$
Since $g_{1}(t)$ has finite energy, it is an energy signal.
For signal $g_{2}(t)$
Energy,

$$
E_{2}=\int_{-\infty}^{\infty}\left|g_{2}(t)\right|^{2} d t=\infty
$$

Average power, $\quad P_{2}=\frac{1}{8} \int_{-4}^{4}\left|g_{2}(t)\right|^{2} d t$

$$
=\frac{1}{8} \int_{-2}^{2} 25 d t=\frac{1}{8} \times 100=12.5
$$

The signal $g_{2}(t)$ has finite power, so it is a power signal.

Alternate Method :

We know that most periodic signals are usually power signals and most non-periodic signals are considered to be energy signals. $g_{1}(t)$ is non-periodic, so it is an energy signal. $g_{2}(t)$ is periodic so it is a power signal.
sol 1.2.19 Option (B) is correct.
Energy, $\quad E_{g}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-3}^{3} 25 d t=150$
Average Power, $\quad P_{g}=\lim _{T \rightarrow \infty} \frac{1}{T} E_{g}=0$
sol 1.2.20 Option (D) is correct.
Energy, $\quad E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\infty$

Average Power, $\quad P_{x}=\frac{1}{8} \int_{-4}^{4}|x(t)|^{2} d t$

$$
=\frac{1}{8} \int_{-2}^{-4} 25 d t=\frac{100}{8}=12.5
$$

sol 1.2.21 Option (D) is correct.
The signal is unbounded, therefore it is not an energy signal.
sOL 1.2.22 Option (C) is correct.

$$
\begin{aligned}
x(t) & =20 \cos (5 t) \cos (10 t) \mathrm{V} \\
& =10[\cos 15 t+\cos 5 t] \\
& =10 \cos 15 t+10 \cos 5 t
\end{aligned} \quad 2 \cos A \cos B=\cos (A-B)+\cos (A+B)
$$

Power

$$
P_{x}=\frac{(10)^{2}}{2}+\frac{(10)^{2}}{2}=100 \mathrm{~W}
$$

rms value $\quad X_{r m s}=\sqrt{100}=10$ volt
sOL 1.2.23 Option (A) is correct.
Here

$$
|x(t)|=\left|e_{\infty}^{j(2 t+\pi / 4)}\right|=1
$$

Energy of the signal $\quad E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} 1 d t=\infty$
The power of signal, $\quad P=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t$

$$
=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} 1 d t=\lim _{T \rightarrow \infty} \frac{1}{2 T}(2 T)=1
$$

Since $x(t)$ has finite power and infinite energy, therefore it is a power signal.
sol 1.2.24 Option (B) is correct.

$$
\text { Power, } \begin{aligned}
P_{x} & =\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t \\
& =\frac{1}{7} \int_{0}^{7}|x(t)|^{2} d t \\
P_{x} & =\frac{1}{7}\left[\int_{0}^{2}(0)^{2} d t+\int_{2}^{5}(4)^{2} d t+\int_{5}^{7}(2)^{2} d t\right] \\
& =\frac{1}{7}[0+(16 \times 3)+(4 \times 2)] \\
& =8 \text { Period }
\end{aligned}
$$

sol 1.2.25 Option (A) is correct.
Energy E_{x} of signal $x(t)$ is given as

$$
E_{x}=\int_{-3}^{3}|x(t)|^{2} d t=12 \text { units }
$$

Energy of $2 x(t)$,

$$
E_{1}=(2)^{2} \times E_{x}=4 \times 12=48 \text { unit }
$$

Let, $\quad x_{2}(t)=x(3 t)$
So, $x_{2}(t)$ is defined over the range $-1 \leq t \leq 1$
Energy $\quad E_{2}=\int_{-1}^{1}\left|x_{2}(t)\right|^{2} d t=\int_{-1}^{1}|x(3 t)|^{2} d t$
Let $3 t=\alpha \longrightarrow d t=\frac{1}{3} d \alpha$
So $\quad E_{2}=\frac{1}{3} \int_{-3}^{3}|x(\alpha)|^{2} d \alpha=\frac{1}{3} \times E_{x}=4$ unit
Energy of $x(t-4)$ is same as $x(t)$.
Energy of $2 x(2 t)$

$$
E_{4}=(2)^{2} \times \frac{1}{2} E_{x}=24 \text { unit }
$$

sOL 1.2.26 Option (B) is correct.

$$
\begin{aligned}
x(t) & =e^{-|t|} \\
x(-t) & =e^{-|-t|}=e^{-|t|}=x(t)
\end{aligned}
$$

Since $x(t)=x(-t)$, it is an even signal.
Signal $x(t)$ is bounded, so it is has some finite energy.

sOL 1.2.27 Option (A) is correct.
$y(t)$ is multiplication of $x_{1}(t)$ and $x_{2}(t)$.
For interval $0 \leq t \leq 1, \quad x_{1}(t)=t, x_{2}(t)=1$
so,

$$
y(t)=x_{1}(t) x_{2}(t)=t
$$

For $1 \leq t \leq 2$,
$x_{1}(t)=1, x_{2}(t)=0.5$ $y(t)=x_{1}(t) x_{2}(t)=0.5$

For $2 \leq t \leq 3$,

$$
\begin{aligned}
x_{1}(t) & =0.5, x_{2}(t) \\
y(t) & =x_{1}(t) x_{2}(t)
\end{aligned}=0.75
$$

sol 1.2.28 Option (C) is correct.
Shift $g(t)$ to the right by one time unit to obtain $g(t-1)$ as shown below :

For $-1 \leq t \leq 0, \quad f(t)=-t-1, g(t-1)=1$
So,
$x(t)=-t-1$
For $0 \leq t \leq 1$,
$f(t)=t, g(t-1)=-1$
So,
$x(t)=-t$
For $1 \leq t \leq 2$, $f(t)=1, g(t-1)=t-2$
So,
For $2 \leq t \leq 3$
$x(t)=t-2$
$f(t)=-t+3, g(t-1)=1$
So,
$x(t)=-t+3$
sol 1.2.29 Option (D) is correct.
Put $t=2 \alpha$,

$$
g(2 \alpha)= \begin{cases}2 \alpha+1, & -1 \leq 2 \alpha \leq 0 \\ 1, & 0 \leq 2 \alpha<2 \\ 0, & \text { else where }\end{cases}
$$

Changing the variable $(\alpha \rightarrow t)$

$$
g(2 t)= \begin{cases}2 t+1, & -\frac{1}{2} \leq t \leq 0 \\ 1, & 0 \leq t<1 \\ 0, & \text { else where }\end{cases}
$$

sol 1.2.30 Option (C) is correct.
The waveform for signal $g(t)$ and $g(t / 2)$ are drawn as below.

Signal $g(t / 2)$ is obtained by expanding the $g(t)$ by a factor of 2 in the time domain.
sol 1.2.31 Option (C) is correct.
The signal $g(t)$ and its expanded signal by factor of 2 and 3 is shown below :

By adding all three, we get

$$
f(t)=g(t)+g(t / 2)+g(t / 3)
$$

sOL 1.2.32 Option (B) is correct.
$3 \Delta(2 t / 3)$ is obtained by expanding $\Delta(t)$ with a factor of $3 / 2$ and scaling amplitude by a factor of 3 .

Similarly, to get $3 \Pi(t / 3)$, expand $\Pi(t)$ by a factor of 3 and amplitude scale by 3

Now adding both signal we get

sol 1.2.33 Option (A) is correct.
Energy of a signal $x(t), \quad E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} t$
Now let the signal is time compressed by a factor of a

$$
y(t)=x(a t)
$$

Energy of $y(t)$

$$
\begin{aligned}
E_{y} & =\int_{-\infty}^{\infty}|x(a t)|^{2} d t \\
a t & =\alpha \Rightarrow d t=\frac{1}{a} d \alpha \\
E_{y} & =\frac{1}{a} \int_{-\infty}^{\infty}|x(\alpha)|^{2} d \alpha=\frac{1}{a} E_{x}
\end{aligned}
$$

So due to time compression energy reduces.
sOL 1.2.34 Option (B) is correct.
To get $g(t+2)$ shift $g(t)$ to the left by 2 time units. The signal is advanced by 2 time units.
sol 1.2.35 Option (D) is correct.
The signal $y(t)$ is the time delayed version of $x(t)$ i.e $y(t)=x(t-2)$
sol 1.2.36 Option (A) is correct.
The delayed version of $x(t)$,

$$
y(t)=x(t-3)
$$

can be obtained directly by shifting $x(t)$ to the right by 3 sec .
sOL 1.2.37 Option (C) is correct.
The time delayed signal $g(t-2)$ can be obtained by shifting $g(t)$ to the right by 2 time units.
sol 1.2.38 Option (C) is correct.
First time reverse the signal $g(t)$ to get $g(-t)$ and then shift $g(-t)$, toward right to get $g(-t+1)$ as shown in figure

SOL 1.2.39
Option (A) is correct.
We have

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

Energy of signal $x(a t-b)$,

$$
E_{2}=\int_{-\infty}^{\infty}|x(a t-b)|^{2} d t
$$

Put $a t-b=\alpha \longrightarrow d t=\frac{1}{a} d \alpha$
So

$$
E_{2}=\frac{1}{a} \int_{-\infty}^{\infty}|x(\alpha)|^{2} d \alpha=\frac{1}{a} E_{x}
$$

sol 1.2.40 Option (C) is correct.
The sequence of transformation is

$$
f(t) \xrightarrow[\text { time revenal }]{t \rightarrow-t} f(-t) \xrightarrow[\text { time shift }]{t \rightarrow t-4} f(4-t) \xrightarrow[\text { time scaling }]{t \rightarrow 2 t} f(4-2 t)
$$

This can be performed in following steps

Alternate Method : As given in methodology of section 1.4, we can also follow the other sequence of operation which is given as
$f(t) \xrightarrow[\text { time shift }]{t \rightarrow t+4} f(t+4) \xrightarrow[\text { time scaling }]{t \rightarrow 2 t} f(2 t+4) \xrightarrow[\text { time revenal }]{t \rightarrow-t} f(-2 t+4)$

SOL 1.2.41 Option (C) is correct.
First we obtain time reversal signal $f(-t)$ by taking mirror image of $f(t)$ along the vertical axis. Then by shifting $f(-t)$ to the left by 3 units we get $f(-t-3)$.

sol 1.2.42 Option (C) is correct.
We can see that $\quad y(2)=x(0)$ [origin is shifted at 2]
so

$$
\begin{align*}
2 a+b & =0 \tag{i}\\
y(8 / 3) & =x(2) \\
\frac{8}{3} a+b & =2
\end{align*}
$$

From eq (i) and (ii) $\quad a=3, b=-6$
SOL 1.2.43 Option (C) is correct.
From the graph we can write $x_{2}(t)=x_{1}(3 t-6)=x_{1}[3(t-2)]$. So $x_{2}(t)$, can be obtained by compressing $x_{1}(t)$ by a factor of 3 and then delaying by 2 time units.

Alternate Method :

As given in methodology of section $1.4, x_{2}(t)$ can be obtained by shifting $x_{1}(t)$ by 6 time units to the right and then by scaling(compressing) it with a factor of 3 . This is not given in any of the four options.
SOL 1.2.44 Option (B) is correct.

$$
\begin{aligned}
& x_{1}(t)
\end{aligned}=x[0.5(t-2)]
$$

First shift $x(t)$ to right by one unit to get $x(t-1)$. Then, expand $x(t-1)$ by a factor of 2 to get $x\left(\frac{t}{2}-1\right)$ or $x(0.5 t-1)$

If we change sequence of transformation by first doing scaling then shifting we get
$x(t) \xrightarrow[\text { time scaling }]{t \rightarrow 0.5 t} x(0.5 t) \xrightarrow[\text { time shifting }]{t \rightarrow t-1} x[0.5(t-1)] \neq x[0.5 t-1]$
Hence (B) is correct option.
sOL 1.2.45 Option (C) is correct.

$$
x_{2}(t)=x(-0.5 t-1)
$$

First shift $x(t)$ to the right by 1 unit, we get $x(t-1)$. Then, expand $x(t-1)$ by a factor of 2 to get $x(t / 2-1)$

Now fold signal $x(0.5 t-1)$ about the vertical axis to get $x(-0.5 t-1)$

If we change the order of transformation we get

$$
x(t) \xrightarrow[\text { Timescaling }]{t \rightarrow 0.5 t} x(0.5 t) \xrightarrow[\text { Timeshifting }]{t \rightarrow t-1} x[0.5(t-1)] \frac{t \rightarrow-t}{\text { Timereversal }} x[-0.5 t-0.5] \neq x[-0.5 t-1]
$$

Time scaling and time reversal are commutative, so we may change their order.
Option (B) is correct.
In multiple transformation, we first do shifting then time scaling. From $y(t)$, we can see that $x(t)$ is shifted to right by 4 time units to get $x(t-4)$. Then it is time expanded by a factor of 2 to get $x(2 t-4)$

sOL 1.2.47 Option (C) is correct.
First fold $x(t)$, with respect to vertical axis. Then shift $x(-t)$ toward right by 2 time units, to get $x(-t+2)$

SOL 1.2.48

SOL 1.2.49
Option (B) is correct.
The sequence of transformation
$x(t) \xrightarrow[\text { time scaling }]{t \rightarrow t / 2} x\left(\frac{t}{2}\right) \xrightarrow[\text { time shifting }]{t \rightarrow t-1} x\left(\frac{t-1}{2}\right) \xrightarrow[\substack{\text { amplitude } \\ \text { scaling }}]{-6}-6 x\left(\frac{t-1}{2}\right)$
If we change the order of transformation.
$x(t) \xrightarrow{t \rightarrow t-1} x(t-1) \xrightarrow{t \rightarrow t / 2} x\left(\frac{t}{2}-1\right) \neq x\left(\frac{t-1}{2}\right)$
Graphically

SOL 1.2.50
Option (C) is correct.
We can perform following sequence of transformation.
$x\left(1-\frac{t}{2}\right) \xrightarrow[\text { time compression }]{t \rightarrow 2 t} x(1-t) \xrightarrow[\text { folding }]{t \rightarrow-t} x(t+1) \xrightarrow[\text { time shifting }]{t \rightarrow t-1} x(t)$

Graphically it is obtained as

Original Signal

Time Reflection

Time Compression

Time Shifting
sol 1.2.51 Option (C) is correct.

$$
\begin{array}{rlr}
x(t) & =\int_{-\infty}^{\infty} e^{-t} \delta(2 t-2) d t=\int_{-\infty}^{\infty} e^{-t} \delta[2(t-1)] d t \quad \delta[2(t-1)]=\frac{1}{2} \delta(t-1) \\
& =\int_{-\infty}^{\infty} e^{-t} \frac{1}{2} \delta(t-1) d t=\frac{1}{2} \int_{-\infty}^{\infty} e^{-t} \delta(t-1) d t & \\
& =\left.\frac{1}{2} e^{-t}\right|_{a t} t=1 \\
& =\frac{1}{2 e} & \int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right)
\end{array}
$$

sol 1.2.52 Option (C) is correct.
From the scaling property of impulse function we can see that

$$
\delta\left[a\left(t-t_{0}\right)\right]=\frac{1}{|a|} \delta\left(t-t_{0}\right)
$$

SOL 1.2.53
Option (C) is correct.

$$
\begin{aligned}
g(t) & =6 \delta(3 t+9)=6 \delta[3(t+3)] \\
& =\frac{6}{3} \delta(t+3) \\
& =2 \delta(t+3)
\end{aligned}
$$

$$
\delta[a(t+b)]=\frac{1}{a} \delta(t+b)
$$

So, $g(t)$ is an impulse with magnitude of 2 unit at $t=-3$.
SOL 1.2.54
Option (B) is correct.
Here we can apply the shifting property of impulse function as below

$$
\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)
$$

Thus

$$
x(t)=\int_{-\infty}^{\infty} \delta(t+5) \cos (\pi t) d t=\left.\cos (\pi t)\right|_{t=-5}=\cos (-5 \pi)=-1
$$

SOL 1.2.55 Option (C) is correct.
First, fold the signal about $t=0$ to get $r(-t)$ and then shift $r(-t)$ toward right to get $r(-t+2)$ as shown below

sol 1.2.56 Option (B) is correct.
The signal $x_{1}(t)$ is shown below

$$
E_{1}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{0}^{1} 1 d t=1 \text { unit }
$$

The signal $x_{2}(t)$ is shown below

$$
\begin{aligned}
E_{2} & =\int_{-\infty}^{\infty}\left|x_{2}(t)\right|^{2} d t \\
& =\int_{0}^{2} t^{2} d t+\int_{2}^{\infty} 4 d t=\infty \quad x_{2} \text { is unbounded }
\end{aligned}
$$

Energy of $x_{3}(t)$

$$
\begin{aligned}
E_{3} & =\int_{-\infty}^{\infty}\left|x_{3}(t)\right|^{2} d t=\int_{0}^{\infty}\left(1+e^{-6 t}\right)^{2} d t \\
& =\int_{0}^{\infty}\left(1+e^{-12 t}+2 e^{-6 t}\right) d t=\infty \quad\left(x_{3} \text { is unbounded }\right)
\end{aligned}
$$

So, only $x_{1}(t)$ has finite energy.
SOL 1.2.57 Option (B) is correct.

$$
x(t)=u(t+2)-2 u(t)+u(t-2)
$$

To draw $x(t)$, we observe change in amplitude at different instants.

1. First at $t=-2, x(t)$ steps up with amplitude 1 .
2. At $t=0$, another step is added with amplitude of -2 . So, the net amplitude
becomes $[1+(-2)]=-1$.
3. Similarly at $t=2$, a step with amplitude 1 is added which causes net amplitude $(-1+1)=0$.
sOL 1.2.58 Option (C) is correct.
To sketch $x(t)$, we observe change in amplitude of step signals at different instants of time.
4. At $t=-3$, a step with magnitude -1 is added.
5. At $t=-1$, another step of magnitude +2 is added which causes net magnitude $(2-1)=1$.
6. At $t=1$, a step of magnitude -2 is added so net magnitude becomes $(1-2)=-1$.
7. At $t=3$, a step with magnitude 1 is added, Now magnitude is $(-1+1)=0$.

SOL 1.2.59 Option (B) is correct.

$$
x(t)=r(t+2)-r(t+1)-r(t-1)+r(t-2)
$$

To sketch $x(t)$, we observe change in slope at different instants of time.

1. At $t=-2$, a ramp with slope of 1 is added.
2. At $t=-1$, a ramp with slope of -1 is added, so net slope becomes $(-1+1)=0$
3. Similarly, at $t=1$, a ramp of slope -1 is added with causes net slope $(-1+0)=-1$
4. Again, at $t=2$ a ramp of slope 1 is added and the net slope becomes zero.

The correct sketch is

SOLUTIONS 1.3

SOL 1.3.1 Option (A) is correct.
Period of $x(t)$, $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{60}=\frac{\pi}{30} \mathrm{sec}$
sol 1.3.2 Option (C) is correct.
Period of $\sin 5 t$, $T_{1}=\frac{2 \pi}{5}$

Period of $\cos 7 t$,
$T_{2}=\frac{2 \pi}{7}$
Period of $x(t)$, $T=\operatorname{LCM}\left(\frac{2 \pi}{5}, \frac{2 \pi}{7}\right)=2 \pi$
sol 1.3.3 Option (D) is correct.
Signal $x(t)$ is not periodic because of the term $5 t$ which is aperiodic in nature.
SOL 1.3.4 Option (D) is correct.
Not periodic because least common multiple of periods of $\sin 3 t$ and $\sin \sqrt{t}$ is infinite.

SOL 1.3.5 Option (A) is correct.
Even part of $x(t), \quad x_{e}(t)=\frac{1}{2}[x(t)+x(-t)]$
This can be obtained graphically in following steps:

sol 1.3.6 Option (C) is correct.
Odd part of $x(t), \quad x_{e}(t)=\frac{1}{2}[x(t)+x(-t)]$
This can be obtained graphically in following steps :

sol 1.3.7 Option (A) is correct.
Even part of $x(t), \quad x_{e}(t)=\frac{1}{2}[x(t)+x(-t)]$
Signal $x_{e}(t)$ is obtained as follows :

SOL 1.3.8 Option (C) is correct.
This is energy signal because

$$
E_{\infty}=\int_{-\infty}^{\infty} x(t) d t<\infty=\int_{-\infty}^{\infty} e^{-4 t} u(t) d t=\int_{0}^{\infty} e^{-4 t} d t=\frac{1}{4}
$$

SOL 1.3.9 Option (A) is correct.
Energy of signal $x(t), \quad E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t$

$$
=\int_{-\infty}^{\infty}(1) d t=\infty
$$

$$
\text { Since }|x(t)|=1
$$

Energy of $x(t)$ is infinite, therefore this is a power signal not an energy signal.
Power of $x(t), \quad \quad P_{x}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t=1$
sol 1.3.10 Option (A) is correct.
Energy of signal $x(t), \quad E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\pi / \omega}^{\pi / \omega} \frac{1}{4}(\cos \omega t+1)^{2} d t$

$$
\begin{aligned}
& =\frac{2}{4} \int_{0}^{\pi / \omega}\left(\cos ^{2} \omega t+2 \cos \omega t+1\right) d t \\
& =\frac{1}{2} \int_{0}^{\pi / \omega}\left(\frac{1}{2} \cos 2 \omega t+\frac{1}{2}+2 \cos \omega t+1\right) d t \\
& =\frac{1}{2}\left(\frac{3}{2}\right)\left(\frac{\pi}{\omega}\right)=\frac{3 \pi}{4 \omega}
\end{aligned}
$$

SOL 1.3.11 Option (B) is correct.
First we shift $x(t)$ and $y(t)$ to the right by 1 unit, to get $x(t-1)$ and $y(t-1)$ respectively. Now by adding $x(t-1)$ and $y(t-1)$, we get $f_{1}(t)$ as shown below

$f_{1}(t)=x(t-1)+y(t-1)$

sol 1.3.12 Option (A) is correct.
First we shift $x(t)$ to the right by 1 unit to get $x(t-1)$ and $y(t)$ to the left by 1 unit to get $y(t+1)$. Now, adding $x(t-1)$ and $y(t+1)$ we will get $f_{2}(t)$ as shown below

sol 1.3.13 Option (A) is correct.
First we shift $x(t)$ to the right by 0.5 unit, and $y(t)$ to the left by 0.5 unit to get $x(t-0.5)$ and $y(t+0.5)$ respectively. Now, adding $x(t-0.5)$ and $y(t+0.5)$ we will get $f_{3}(t)$ as shown below

Sol. 5.1.31

SOL 1.3.14 Option (D) is correct.
$f_{4}(t)$ can be obtained by performing multiple operation on $x(t)$. First delay $x(t)$ by 1 unit, we get $x(t-1)$. Now, time expand $x(t-1)$ by a factor of 2 , we get $x(t / 2-1)$ or $x(0.5 t-1)$. In last step, $f_{4}(t)$ can is obtained by multiplying $x(0.5 t-1)$ with a constant 1.5. Graphically, these steps are performed as shown below :

sol 1.3.15 Option (C) is correct.

$$
y(t)=x(10 t-5)
$$

The sequence of transformation is

$$
x(t) \xrightarrow[\text { time shift }]{t \rightarrow t-5} x(t-4) \xrightarrow[\text { time scaling }]{t \rightarrow 10 t} x(10 t-5)
$$

This can be performed in following steps

sol 1.3.16 Option (D) is correct.
Multiplication of independent variable t by 5 will bring compression on time scale.
It may be checked by $x(5 \times 0.8)=x(4)$.
sol 1.3.17 Option (A) is correct.
Division of independent variable t by 5 will bring expansion on time scale. It may be checked by

$$
y(20)=x\left(\frac{20}{5}\right)=x(4)
$$

SOL 1.3.18
Option (C) is correct.
Mathematically, the function $x(t)$ can be defined as

$$
\begin{aligned}
x(t) & =\left\{\begin{array}{lll}
t+5, & \text { for } & -5<t<-4 \\
-t+5, & \text { for } & 4<t<5 \\
1, & \text { for } & -4<t<4
\end{array}\right. \\
y(t)=\frac{d x(t)}{d t} & =\left\{\begin{array}{lll}
1, & \text { for } & -5<t<-4 \\
-1, & \text { for } & 4<t<5 \\
0, & \text { for } & -4<t<4
\end{array}\right.
\end{aligned}
$$

Energy of $y(t)$ is calculated as

$$
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t=\int_{-5}^{-4}(1)^{2} d t+\int_{4}^{5}(-1)^{2} d t=2
$$

SOL 1.3.19 Option (D) is correct.

$$
\begin{aligned}
E & =\int_{-\infty}^{\infty}|x(t)|^{2} d t=2 \int_{0}^{5} x^{2}(t) d t \\
& =2 \int_{0}^{4}(1)^{1} d t+2 \int_{4}^{5}(5-t)^{2} d t=8+\frac{2}{3}=\frac{36}{3}
\end{aligned}
$$

sol 1.3.20 Option (C) is correct.
The transformation of $x(t)$ to $y(t)$ is shown as below

SOL 1.3.21
Option (A) is correct.
For an impulse function we have

$$
\int_{-\infty}^{\infty} \delta(t-a) d t=1, \text { for } t=a \text { otherwise } 0
$$

so, $\int_{-1}^{8}[\delta(t+3)-2 \delta(4 t)] \delta t=\int_{-1}^{8} \delta(t+3) d t-2 \int_{-1}^{8} \delta(4 t) d t$

$$
\begin{array}{rr}
=0-2 \int_{-1}^{8} \delta(4 t) & \int_{-\infty}^{\infty} \delta(t-a) d t=1, \text { for } t=a \\
=-\frac{2}{4} \int_{-1}^{8} \delta(t)=-\frac{1}{2} & \text { since } \delta(a t)=\frac{1}{a} \delta(t)
\end{array}
$$

$$
\int_{-1}^{8} \delta(t+3) d t=0 \text { because } t=-3 \text { does not exist in the given interval }(-1<t<8)
$$

sol 1.3.22 Option (C) is correct.

$$
\begin{array}{rlr}
x(t) & =2 \delta(2 t)+6 \delta[3(t-2)] & \\
& =\frac{2}{2} \delta(t)+\frac{6}{3} \delta(t-2) & \text { since } \delta a\left(t-t_{0}\right)=\frac{1}{a} \delta\left(t-t_{0}\right) \\
& =\delta(t)+2 \delta(t-2) &
\end{array}
$$

SOL 1.3.23 Option (A) is correct.
From the shifting property of impulse function, we know that

$$
\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)
$$

So, $\quad y(\tau)=\int_{-\infty}^{\infty} x(\tau)[\delta(\tau-2)+\delta(\tau+2)] d \tau$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x(\tau)[\delta(\tau-2)] d \tau+\int_{-\infty}^{\infty} x(\tau)[\delta(\tau+2)] d \tau \\
& =x(2)+x(-2)
\end{aligned}
$$

sol 1.3.24 Option (D) is correct.
Substituting at $=u \Rightarrow d t=\frac{1}{a} d u$, we get

$$
\begin{aligned}
\int_{-\infty}^{\infty} \delta(a t-b) \sin ^{2}(t-4) d t & =\int_{-\infty}^{\infty} \delta(u-b) \sin ^{2}\left(\frac{u}{a}-4\right) \frac{d u}{a} \\
& =\frac{1}{a} \int_{-\infty}^{\infty} \delta(u-b) \sin ^{2}\left(\frac{u}{a}-4\right) d u \\
& =\frac{\sin ^{2}\left(\frac{b}{a}-4\right)}{a} \quad \text { since } \int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)
\end{aligned}
$$

sol 1.3.25 Option (C) is correct.
$x(t)$ is obtained in following steps :

SOL 1.3.26
Option (B) is correct.
All signal are as shown below

sol 1.3.27 Option (C) is correct.

$$
\begin{aligned}
x(t) & =4 \operatorname{tri}(t)=4(1-\mid t) \quad 0<|t|<1 \\
x\left(\frac{1}{2}\right) & =4\left(1-\left|\frac{1}{2}\right|\right)=2
\end{aligned}
$$

sol 1.3.28 Option (D) is correct.
Figure is as shown below

sol 1.3.29 Option (B) is correct.
This is triangle with the same height as $\left(\frac{1}{\alpha}\right) \operatorname{tri}\left(\frac{x}{\alpha}\right)$, but $1 / 4$ times the base width. Therefore, its area is $1 / 4$ times as that of area of $\delta(x)$ or $1 / 4$.

SOL 1.3.30

SOL 1.3.31
sOL 1.3.32 Option (A) is correct.
The figure is as shown below :

SOL 1.3.33 Option (D) is correct.
$v(t)$ is sum of 3 unit step signal starting from 1, 2, and 3, all signal ends at 4 .
sOL 1.3.34 Option (B) is correct.
Unit step function $u(t)$ and its folded version $u(-t)$ are shown in the figures below

Now, by shifting $u(-t)$ to the right by a units and b units, we get $u(a-t)$ and $u(b-t)$ respectively.

Similarly, by shifting $u(t)$ to the the right by a units and b units, we get $u(t-a)$ and $u(t-b)$.

From the above graphs, we can see that

$$
\begin{aligned}
& v(t)=u(t-a)-u(t-b) \\
& \text { and, } \quad v(t)=u(b-t) \times u(t-a)
\end{aligned}
$$

sol 1.3.35 Option (B) is correct.
The ramp function is shown as

Signal $r(t-4)$ and $r(t-6)$ are obtained by shifting $r(t)$ towards right by 4 units and 6 units respectively. Now we subtract $r(t-6)$ from $r(t-4)$ to get $x(t)$.

$$
x(t)=r(t-4)-r(t-6)
$$

Alternate Method :

We have $\quad r(t-4)= \begin{cases}t-4, & t>4 \\ 0, & t<4\end{cases}$
and
$r(t-6)= \begin{cases}t-6, & t>6 \\ 0, & t<6\end{cases}$

Now $\begin{aligned} r(t-4)-r(t-6) & = \begin{cases}t-4, & 4<t<6 \\ t-4-t+6, & t>6 \\ 0, & t<4\end{cases} \\ & = \begin{cases}t-4, & 4<t<6 \\ 2, & t>6 \\ 0, & t<4\end{cases} \end{aligned}$
sol 1.3.36 Option (C) is correct.
To obtain the expression for $x(t)$, we note the change in amplitude and slope at different instants of time and write expression for each change. The steps are as follows :

1. At $t=0$, the function steps from 0 to 3 , for a change in amplitude of 3 . Also the slope of function changes from 0 to -3 , for a change in slope of -3 ; so we write

$$
\begin{aligned}
& x_{1}(t)=(3-0) u(t-0)+(-3-0)(t-0) u(t-0) \\
= & 3 u(t)-3 t u(t)=3(1-t) u(t)
\end{aligned}
$$

2. At $t=1$, the function steps from 0 to 1.5 , for a change in amplitude of 1.5 . Also the slope of function changes from -3 to -1.5 , for a change in slope of 1.5 ; so we write

$$
\begin{aligned}
x_{2}(t) & =1.5 u(t-1)+1.5(t-1) u(t-1) \\
& =1.5 u(t-1)+1.5 t u(t-1)-1.5 u(t-1) \\
& =1.5 t u(t-1)
\end{aligned}
$$

3. At $t=3$, the function steps up from -1.5 to 0 , for a change in amplitude of 1.5. Also the slope of function changes from -1.5 to 0 , for a change in slope of 1.5; so we write

$$
\begin{aligned}
x_{3}(t) & =1.5 u(t-3)+1.5(t-3) u(t-3) \\
& =1.5 u(t-3)+1.5 t u(t-3)-4.5 u(t-3) \\
& =1.5 t u(t-3)-3 u(t-3) \\
& =1.5(t-2) u(t-3)
\end{aligned}
$$

Hence the equation for $x(t)$ is

$$
\begin{aligned}
x(t) & =x_{1}(t)+x_{2}(t)+x_{3}(t) \\
& =3(1-t) u(t)+1.5 t u(t-1)+1.5(t-2) u(t-3)
\end{aligned}
$$

sol 1.3.37 Option (A) is correct.
To obtain the waveform for $x(t)$, we observe change in magnitude of unit step signals at different instants of time.

1. At $t=-1$, a step with magnitude 1 is added, so magnitude at $t=-1$ is 1 .
2. At $t=1$, another step of magnitude -2 is added, so net amplitude becomes $(1-2)=-1$
3. At $t=3$, a step of magnitude 1 is added which causes net magnitude $(-1+1)=0$

Alternate Method :

From the expression we get
For $-1<t<1, x(t)=1$
For $1<t<3, x(t)=-1$
For $t>3, \quad x(t)=0$
SOL 1.3.38 Option (D) is correct.
Rearranging the given expression

$$
x(t)=-2 u(t+2)+u(t+1)+u(t)
$$

The sketch of $x(t)$ is obtained using following steps :

1. At $t=-2$, a step of magnitude -2 is added, so magnitude at $t=-2$ is -2
2. At $t=-1$, another step of magnitude 1 is added which causes net magnitude to become $(-2+1)=-1$
3. At $t=0$, another step of magnitude 1 is added, the net amplitude now becomes $(-1+1)=0$.

Alternate Method:

For $-2<t<1, x(t)=-2$
For $-1<t<0, x(t)=-1$
For $0<t, \quad x(t)=0$
sOL 1.3.39 Option (B) is correct.
By observing both the change in amplitude and change in slope, we get $x(t)$ as following :

1. At $t=1$, a ramp of slope 2 is added, so the net slope of function becomes $(0+2)=2$
2. At $t=2$, a ramp of slope -2 is added which causes net slope to becomes $(2-2)=0$
3. At $t=3$, another ramp of slope 2 is added, now net slope of function becomes $(0+2)=2$

Alternate Method :

For $1<t<2, x(t)=2(t-1)$
For $2<t<3, x(t)=2$
For $3<t, \quad x(t)=2 t-2$
SOL 1.3.40 Option (D) is correct.
Rewriting the $x(t)$ as below

$$
x(t)=-t u(t)+(t-1) u(t-1)+2 u(t-1)-u(t-2)
$$

1. At $t=0$, a ramp of slope -1 is added.
2. At $t=1$, another ramp of slope 1 is added, so net slope at this instant becomes $(-1+1)=0$
3. At $t=1$, a step of amplitude 2 is added, so amplitude of $x(t)$ becomes

$$
(-1+2)=1
$$

4. At $t=2$ another step of amplitude -1 is added which causes net amplitude to become $(1-1)=0$

SOL 1.3.41

Option (A) is correct.
We may represent $y(t)$ as the superposition of 4 rectangular pulses as follows

$$
y(t)=y_{1}(t)+y_{2}(t)+y_{3}(t)+y_{4}(t)
$$

$y_{1}(t), y_{2}(t), y_{3}(t)$ and $y_{4}(t)$ are the time shifted and time scaled version of function $x(t)$ with different factors.
In general

$$
y_{i}(t)=x\left(a_{i} t-b_{i}\right) \quad i=1,2,3,4
$$

$$
y_{1}(t)=x\left(a_{1} t-b\right)
$$

For $t=0$,

$$
y_{1}(0)=x\left(a_{1} \times 0-b_{1}\right)=x(-1)
$$

$$
\Rightarrow \quad a_{1} \times 0-b_{1}=-1
$$

$$
b_{1}=1
$$

For $t=4$,

$$
y_{1}(4)=x\left(a_{1} \times 4-b_{1}\right)=x(1)
$$

$\Rightarrow \quad a_{1} \times 4-b_{1}=1$

$$
4 a_{1}=1+b_{1} \Rightarrow a_{1}=1 / 2
$$

$$
y_{1}(t)=x\left(\frac{1}{2} t-1\right)
$$

$$
y_{2}(t)=x\left(a_{2} t-b_{2}\right)
$$

For $t=1$,

$$
\begin{equation*}
y_{2}(1)=x\left(a_{2} \times 1-b_{2}\right)=x(-1) \tag{i}
\end{equation*}
$$

$\Rightarrow \quad a_{2}-b_{2}=-1$
For $t=4$,

$$
\begin{equation*}
y_{2}(4)=x\left(a_{2} \times 4-b_{2}\right)=x(1) \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad 4 a_{2}-b_{2}=1$
Solving equation (i) and (ii), we get $a=2 / 3$ and $b=5 / 3$
Thus,

$$
y_{2}(t)=x\left(\frac{2}{3} t-\frac{5}{3}\right)
$$

Similarly, we can obtain $y_{3}(t)$ and $y_{4}(t)$ also

$$
\begin{aligned}
& y_{3}(t)=x(t-3) \\
& y_{4}(t)=x(2 t-7)
\end{aligned}
$$

Accordingly, we may express the staircase signal $y(t)$ in terms of the rectangular pulses $x(t)$ as follows:

$$
y(t)=x\left(\frac{1}{2} t-1\right)+x\left(\frac{2}{3} t-\frac{5}{3}\right)+x(t-3)+x(2 t-7)
$$

SOL 1.3.42 Option (B) is correct.
$x_{1}(t)$ can be obtained using following methodology

1. At $t=0$, slope changes from 0 to 2 , so we write

$$
x_{1}^{\prime}(t)=2 t u(t)
$$

2. At $t=1$, slope change from 2 to -2 for a change of -4 in slope; so we write

$$
x_{1}^{\prime \prime}(t)=-4(t-1) u(t-1)
$$

3. At $t=2$, slope changes from -2 to 0 for a change of 2 in slope; so we write

$$
x_{1}^{\prime \prime \prime}(t)=2(t-2) u(t-2)
$$

Thus,

$$
\begin{aligned}
x(t) & =x_{1}^{\prime}(t)+x_{1}^{\prime \prime}(t)+x_{1}^{\prime \prime \prime}(t) \\
& =2 t u(t)-4(t-1) u(t-1)+2(t-2) u(t-2)
\end{aligned}
$$

SOL 1.3.43 Option (B) is correct.
The expression for periodic waveform is

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{1}\left(t-k T_{0}\right)
$$

Here, $T_{0}=2$, therefore

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{1}(t-2 k)
$$

SOLUTIONS 1.4

sol 1.4.1 Option (D) is correct.
A signal conveys information on the nature of physical phenomenon.
sol 1.4.2 Option (A) is correct.

$$
x(t)=\cos (1.2 \pi t)+\cos (2 \pi t)+\cos (2.8 \pi t)
$$

Frequency of $\cos (1.2 \pi t), \quad f_{1}=0.6 \mathrm{~Hz}$
$2 \pi f_{1}=1.2 \pi$
Frequency of $\cos (2 \pi t), \quad f_{2}=1 \mathrm{~Hz}$
$2 \pi f_{2}=1.2 \pi$
Frequency of $\cos (2.8 \pi t), \quad f_{3}=1.4 \mathrm{~Hz}$
$2 \pi f_{3}=2.8 \pi t$
Fundamental Frequency of $x(t)$ will be greatest common divisor of f_{1}, f_{2}, f_{3}

$$
\begin{aligned}
f & =\operatorname{GCD}\left(f_{1}, f_{2}, f_{3}\right) \\
& =0.2 \mathrm{~Hz}
\end{aligned}
$$

sol 1.4.3 Option (A) is correct.
We have $x(t)=\cos (200 \pi t)+0.5 \cos (40 \pi t) \cos (200 \pi t)$

$$
=\cos (200 \pi t)+\frac{1}{4} \cos 240 \pi t+\frac{1}{4} \cos (360 \pi t)
$$

Fundamental frequency of $(\cos 200 \pi t), f_{1}=100 \mathrm{~Hz}$
$2 \pi f_{1}=200 \pi$
Fundamental frequency of $(\cos 240 \pi t), f_{2}=120 \mathrm{~Hz}$
$2 \pi f_{2}=240 \pi$
Fundamental frequency of $(\cos 360 \pi t), f_{3}=180 \mathrm{~Hz}$
$2 \pi f_{3}=360 \pi t$
Fundamental frequency of $x(t)$ is greatest common devisor of f_{1}, f_{2} and f_{3}, i. e.

$$
f=\operatorname{GCD}\left(f_{1}, f_{2}, f_{3}\right)=20 \mathrm{~Hz}
$$

sOL 1.4.4 Option (C) is correct.

$$
x(t)=2 \sin (2 \pi t)+3 \sin (3 \pi t)
$$

Period of $\sin (2 \pi t), \quad T_{1}=\frac{2 \pi}{2 \pi}=1 \mathrm{sec}$
Period of $\sin (3 \pi t), \quad T_{2}=\frac{2 \pi}{3 \pi}=\frac{2}{3} \mathrm{sec}$
Ratio

$$
\frac{T_{1}}{T_{2}}=\frac{m}{n}=\frac{1}{(2 / 3)}=\frac{3}{2}
$$

Period of $x(t)$,

$$
T=\operatorname{LCM}\left(1, \frac{2}{3}\right)=2
$$

sol 1.4.5 Option (B) is correct.
We have

$$
\begin{aligned}
f(t) & =\cos \left[\frac{\pi}{4}(t-1)\right] \\
T & =\frac{2 \pi}{\omega}=\frac{2 \pi}{(\pi / 4)}=8 \mathrm{sec}
\end{aligned}
$$

Period of $f(t)$,
sol 1.4.6 Option (A) is correct.

$$
x_{1}(t)=2 \sin \pi t+\cos 4 \pi t
$$

Period of $\sin \pi t, \quad T_{11}=\frac{2 \pi}{\pi}=2$
Period of $\cos 4 \pi t, \quad T_{12}=\frac{2 \pi}{4 \pi}=\frac{1}{2}$

$$
\frac{T_{11}}{T_{12}}=\frac{2}{(1 / 2)}=4(\text { rational })
$$

Since ratio of T_{11} and T_{12} is rational, $x_{1}(t)$ is periodic.

$$
x_{2}(t)=\sin 5 \pi t+3 \sin 13 \pi t
$$

Period of $\sin 5 \pi t, \quad T_{21}=\frac{2 \pi}{5 \pi}=\frac{2}{5}$
Period of $\sin 13 \pi t, \quad T_{22}=\frac{2 \pi}{13 \pi}=\frac{2}{13}$

$$
\frac{T_{21}}{T_{22}}=\frac{(2 / 5)}{(2 / 13)}=\frac{13}{5}(\text { rational })
$$

Since ratio of T_{21} and T_{21} is rational, $x_{2}(t)$ is also periodic.
sOL 1.4.7 Option (B) is correct.
The sum of two sinusoids is periodic if ratio of their periods is rational.
sol 1.4.8 Option (A) is correct.
A signal is said to be periodic if it repeats at regular interval. If $x(t)$ is periodic with period T_{0} it must satisfies.

$$
x\left(t+T_{0}\right)=x(t)
$$

sOL 1.4.9 Option (B) is correct.
We have

$$
\begin{aligned}
x_{1}(t) & =e^{j 20 t} \\
T_{1} & =\frac{2 \pi}{20}=\frac{\pi}{10} \\
x_{2}(t) & =e^{-(2+j) t}
\end{aligned}
$$

Period of $x_{1}(t), \quad T_{1}=\frac{2 \pi}{20}=\frac{\pi}{10}$

Since, $\frac{2 \pi}{(2+j)}$ is not rational, so $x_{2}(t)$ is not periodic.
sOL 1.4.10 Option (A) is correct.
(A)

$$
x_{1}(t)=\sin (10 \pi t)+\sin (20 \pi t)
$$

Period of $\sin (10 \pi t), \quad T_{11}=\frac{2 \pi}{10 \pi}=\frac{1}{5}$
Period of $\sin (20 \pi t), \quad T_{12}=\frac{2 \pi}{20 \pi}=\frac{1}{10}$
Ratio

$$
\frac{T_{11}}{T_{12}}=\frac{1 / 5}{1 / 10}=2(\text { rational })
$$

Since ration of T_{11} and T_{12} is rational, $x_{1}(t)$ is periodic.

$$
\begin{equation*}
x_{2}(t)=\sin (10 t)+\sin (20 \pi t) \tag{B}
\end{equation*}
$$

Period of $\sin (10 t), \quad T_{21}=\frac{2 \pi}{10}=\frac{\pi}{5}$

Period of $\sin (20 \pi t), \quad T_{22}=\frac{2 \pi}{20 \pi}=\frac{1}{10}$
Ratio,

$$
\frac{T_{21}}{T_{22}}=\frac{\pi / 5}{1 / 10}=2 \pi
$$

(not rational)
Since T_{21} / T_{22} is not rational, $x_{2}(t)$ is not periodic.
Similarly, we can check for option (C) and (D) also. Both are aperiodic.
sol 1.4.11 Option (D) is correct.
Period of $x(t), \quad T=\frac{2 \pi}{\omega}=\frac{2 \pi}{0.8 \pi}=2.5 \mathrm{sec}$
sOL 1.4.12 Option (D) is correct.

$$
x(t)=x_{1}(t)+j x_{2}(t)
$$

A complex valued signal always possess conjugate symmetry.
sol 1.4.13 Option (A) is correct.

$$
\begin{aligned}
\Psi(t) & =f(t)+f(-t) \\
\Psi(-t) & =f(-t)+f(t)
\end{aligned}
$$

$$
\text { Since } \quad \Psi(t)=\Psi(-t)
$$

Thus $\Psi(t)$ is an even function.
sOL 1.4.14 Option (B) is correct.
We have $\quad x(t)=A \cos (\omega t+\phi)$
We know that most of the periodic signals are power signal. $x(t)$ is also a periodic signal and has finite power.

$$
p_{x}=\frac{A^{2}}{2}
$$

sol 1.4.15 Option (D) is correct.
Average power of signal is given by

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

Note : If $x(t)$ is periodic, then T has finite value and above expression becomes as

$$
P=\frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t=\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t
$$

sol 1.4.16 Option (C) is correct.
Energy of a power signal is infinite while the power of an energy signal is zero.
sol 1.4.17 Option (A) is correct.

$$
\begin{aligned}
s(t) & =8 \cos \left(\frac{\pi}{2}-20 \pi t\right)+4 \sin 15 \pi t \\
& =8 \sin 20 \pi t+4 \sin 15 \pi t
\end{aligned}
$$

Here $A_{1}=8$ and $A_{2}=4$. Thus power is

$$
P=\frac{A_{1}^{2}}{2}+\frac{A_{2}^{2}}{2}=\frac{8^{2}}{2}+\frac{4^{2}}{2}=40
$$

sOL 1.4.18 Option (B) is correct.
A bounded signal always possesses some finite energy.

$$
E=\int_{-t_{0}}^{t_{0}}\left|g(t)^{2}\right| d t<\infty
$$

sol 1.4.19 Option (B) is correct.
Let E be the energy of $f(t)$ and E_{1} be the energy of $f(2 t)$, then
and

$$
\begin{aligned}
E & =\int_{-\infty}^{\infty}[f(t)]^{2} d t \\
E_{1} & =\int_{-\infty}^{\infty}[f(2 t)]^{2} d t
\end{aligned}
$$

Substituting $2 t=p$ we get

$$
E_{1}=\int_{-\infty}^{\infty}[f(p)]^{2} \frac{d p}{2}=\frac{1}{2} \int_{-\infty}^{\infty}[f(p)]^{2} d p=\frac{E}{2}
$$

SOL 1.4.20 Option (C) is correct.
If a function $f(t)$ is shifted to right side by t_{0} units, then the shifted function is expressed as $f\left(t-t_{0}\right) u\left(t-t_{0}\right)$.
Let,
$f(t)=t+2$

$$
x(t)=f(t-1) u(t-1)
$$

If we write, $\quad x(t)=f(t) u(t-1)$
For $t=0 \quad x(0)=f(0)=2$
But, $\quad x(0)=0$ (In the graph)
So $f(t) u\left(t-t_{0}\right)$ is not correct expression for shifted signal.
sol 1.4.21 Option (A) is correct.
The plot of given signal $x(t)$ is shown below

First reflect the signal about the vertical axis to obtain $x(-t)$. Then shift $x(-t)$ towards right by 1 unit to get $x(-t+1)$. Both operation is shown below

sol 1.4.22 Option (A) is correct.
$v[n]$ and $v[-n]$ is drawn as

$$
\begin{aligned}
y[n] & =v[n]+v[-n] \\
& =0, \text { for all } n
\end{aligned}
$$

SOL 1.4.23 Option (B) is correct.
Product property of impulse function

$$
f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \delta\left(t-t_{0}\right)
$$

For $t_{0}=0, \quad f(t) \delta(t)=f(0) \delta(t)$
Shifting property of impulse function

$$
\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)
$$

Area under Impulse function is unity.

$$
\int_{-\infty}^{\infty} \delta(t) d t=1
$$

For detailed discussion on properties of unit impulse function, refer page 32 of the book GATE GUIDE Signals \& Systems by the same authors

SOL 1.4.24 Option (D) is correct.
Dirac delta function $\delta(t)$ is defined at $t=0$ and it has infinite value a $t=0$. The area of dirac delta function is unity.
sol 1.4.25 Option (A) is correct.
We know that $\delta(t) x(t)=x(0) \delta(t)$ and $\int_{-\infty}^{\infty} \delta(t)=1$
Let $x(t)=\cos \left(\frac{3}{2} t\right)$, then $x(0)=1$

Now $\quad \int_{-\infty}^{\infty} \delta(t) x(t)=\int_{-\infty}^{\infty} x(0) \delta(t) d t=\int_{-\infty}^{\infty} \delta(t) d t=1$
sOL 1.4.26 Option (B) is correct.
We know that

$$
\begin{aligned}
\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) & =x\left(t_{0}\right) \\
\text { so } \quad \int_{-\infty}^{\infty} \delta\left(t-\frac{\pi}{6}\right) 6 \sin (t) d t & =\left.6 \sin (t)\right|_{t=\pi / 6} \\
& =6 \sin \left(\frac{\pi}{6}\right) \\
& =6 \times \frac{1}{2}=3
\end{aligned}
$$

Here $x(t)=6 \sin t, t_{0}=\frac{\pi}{6}$

SOL 1.4.27 Option (A) is correct.

$$
x(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} t^{2} e^{-t^{2} / 2} \delta(1-2 t) d t
$$

Let,

$$
1-2 t=\alpha \Rightarrow t=\left(\frac{\alpha+1}{2}\right) \text { and } d t=-\frac{1}{2} d \alpha
$$

Now

$$
\begin{aligned}
x(t) & =\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{-\infty}\left(\frac{\alpha+1}{2}\right)^{2} e^{-\frac{1}{2}\left(\frac{\alpha+1}{2}\right)^{2}} \delta(\alpha)\left(-\frac{1}{2} d \alpha\right) \\
& =\frac{1}{2 \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\frac{\alpha+1}{2}\right)^{2} e^{-\frac{1}{2}\left(\frac{\alpha+1}{2}\right)^{2}} \delta(\alpha) d \alpha \quad \int_{-\infty}^{\infty} f(t) \delta(t) d t=f(0) \\
& =\left.\frac{1}{2 \sqrt{2 \pi}}\left(\frac{\alpha+1}{2}\right)^{2} e^{-\frac{1}{2}\left(\frac{\alpha+1}{2}\right)^{2}}\right|_{\alpha=0} \\
& =\frac{1}{2 \sqrt{2 \pi}}\left(\frac{1}{2}\right)^{2} e^{-\frac{1}{2}\left(\frac{1}{2}\right)^{2}}=\frac{1}{8 \sqrt{2 \pi}} e^{-\frac{1}{8}}
\end{aligned}
$$

SOL 1.4.28 Option (B) is correct.

$$
\int_{0}^{t} \int_{0}^{t} u(t) d t=\int_{0}^{t} t u(t) d t=\frac{t^{2}}{2}
$$

(Parabola)
SOL 1.4.29 Option (A) is correct.

$$
x_{e}(t)=\frac{x(t)+x(-t)}{2}
$$

and

$$
x_{o}(t)=\frac{x(t)-x(-t)}{2}
$$

Here

$$
g(t)=u(t)
$$

Thus

$$
\begin{aligned}
& x_{e}(t)=\frac{u(t)+u(-t)}{2}=\frac{1}{2} \\
& x_{o}(t)=\frac{u(t)-u(-t)}{2}=\frac{x(t)}{2}
\end{aligned}
$$

SOL 1.4.30
Option (D) is correct.
At $t=1$, signal steps up from $0 \rightarrow 1$, so

$$
v_{1}(t)=(1-0) u(t-1)=u(t-1)
$$

At $t=2$, signal steps up from $1 \rightarrow 2$, so

$$
v_{2}(t)=(2-1) u(t-2)=u(t-2)
$$

At $t=3$, signal steps up from $2 \rightarrow 3$, so

$$
v_{3}(t)=(3-2) u(t-3)=u(t-3)
$$

At $t=4$, signal steps down from $3 \rightarrow 0$, so

$$
\begin{aligned}
v_{4}(t) & =(0-3) u(t-4)=-3 u(t-4) \\
v(t) & =v_{1}(t)+v_{2}(t)+v_{3}(t)+v_{4}(t) \\
& =u(t-1)+u(t-2)+u(t-3)-3 u(t-4)
\end{aligned}
$$

For detailed discussion please refer to methodology of section 1.6 of the book GATE GUIDE Signals \& Systems by same authors.
sol 1.4.31 Option (A) is correct.
We know that ramp function is obtained by double differentiation of impulse function.

Given Function is

$$
f(t)=-\delta(t-1)-\delta(t-2)+\delta(t-3)+\delta(t-4)-\delta(t-5)+2 \delta(t-6)-\delta(t-7)
$$

In-terms of ramp function
$f(t)=-t u(t-1)-t u(t-2)+t u(t-3)+t u(t-4)-t u(t-5)+2 t u(t-6)-t u(t-7)$
sOL 1.4.32 Option (B) is correct.

$$
\begin{array}{ll}
v(t)=u(t-1)-u(t-3) & (\mathrm{A} \rightarrow 3) \\
v(t)=\lim _{a \rightarrow 0} \delta(t-1) & (\mathrm{B} \rightarrow 4) \\
v(t)=u(t+1) & (\mathrm{C} \rightarrow 1) \\
v(t)=u(t)-2 u(t-1)+2 u(t-2)-2 u(t-3)+\ldots & (\mathrm{D} \rightarrow 2)
\end{array}
$$

sol 1.4.33 Option (C) is correct.
At $t=0, f(t)$ step up from $0 \rightarrow 1$, so we write

$$
f_{1}(t)=(1-0) u(t-0)=u(t)
$$

At $t=1, f(t)$ steps up from $1 \rightarrow 2$, so we write

$$
f_{2}(t)=(2-1) u(t-1)=u(t-1)
$$

At $t=2$ slope changes from $0 \rightarrow 1$ so we write

Now, $\quad f(t)=f_{1}(t)+f_{2}(t)+f_{3}(t)$

$$
=u(t)+u(t-1)+(t-2) u(t-2)
$$

For detailed discussion please refer to methodology of section 1.6 on page 37, given in the book GATE GUIDE Signals \& Systems by the same authors.
sOL 1.4.34 Option (B) is correct.

$$
f_{1}(t)=t u(t) \rightarrow \text { option }(3)
$$

$$
\begin{aligned}
f_{2}(t) & =\operatorname{shift} f_{1}(t) \text { by } 1 \text { unit } \\
& =(t-1) u(t-1) \rightarrow \text { option }(6)
\end{aligned}
$$

$$
\begin{aligned}
f_{3}(t) & =t u(t)+u(t) \\
& =(t+1) u(t) \rightarrow \text { Option }(4)
\end{aligned}
$$

$$
f_{4}(t)=t u(t+1) \rightarrow \text { option }(1)
$$

sOL 1.4.35 Option (D) is correct.
At $t=3$ slope changes from $0 \rightarrow 2$, so we write

$$
\begin{aligned}
v_{1}(t) & =(2-0)(t-3) u(t-3) \\
& =(2 t-6) u(t-3)
\end{aligned}
$$

at $t=4, v(t)$ becomes zero, so

$$
v(t)=(2 t-6)[u(t-3)-u(t-4)]
$$

